đ Fine-tuned XLS-R 1B model for speech recognition in Portuguese
This fine-tuned model is based on facebook/wav2vec2-xls-r-1b and trained on Portuguese using the train and validation splits of Common Voice 8.0, CORAA, Multilingual TEDx, and Multilingual LibriSpeech. When using this model, ensure that your speech input is sampled at 16kHz.
This model has been fine-tuned by the HuggingSound tool, and thanks to the GPU credits generously given by the OVHcloud.
đ Quick Start
⨠Features
- Automatic Speech Recognition: Capable of accurately transcribing Portuguese speech.
- Fine-tuned on Multiple Datasets: Utilizes data from Common Voice 8.0, CORAA, Multilingual TEDx, and Multilingual LibriSpeech.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-portuguese")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "pt"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-portuguese"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
đ Documentation
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset mozilla-foundation/common_voice_8_0 --config pt --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-portuguese --dataset speech-recognition-community-v2/dev_data --config pt --split validation --chunk_length_s 5.0 --stride_length_s 1.0
đ§ Technical Details
Property |
Details |
Model Type |
Fine-tuned XLS-R 1B model for Portuguese speech recognition |
Training Data |
Train and validation splits of Common Voice 8.0, CORAA, Multilingual TEDx, and Multilingual LibriSpeech |
đ License
This model is licensed under the Apache-2.0 license.
đĻ Model Index
- Name: XLS-R Wav2Vec2 Portuguese by Jonatas Grosman
- Results:
- Task: Automatic Speech Recognition
- Dataset: Common Voice 8 (
mozilla-foundation/common_voice_8_0
with pt
args)
- Metrics:
- Test WER: 8.7
- Test CER: 2.55
- Test WER (+LM): 6.04
- Test CER (+LM): 1.98
- Task: Automatic Speech Recognition
- Dataset: Robust Speech Event - Dev Data (
speech-recognition-community-v2/dev_data
with pt
args)
- Metrics:
- Dev WER: 24.23
- Dev CER: 11.3
- Dev WER (+LM): 19.41
- Dev CER (+LM): 10.19
- Task: Automatic Speech Recognition
- Dataset: Robust Speech Event - Test Data (
speech-recognition-community-v2/eval_data
with pt
args)
đ Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr-1b-portuguese,
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {P}ortuguese},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-portuguese}},
year={2022}
}