Model Overview
Model Features
Model Capabilities
Use Cases
đ wav2vec2-xls-r-300m-en-atc-atcosim
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the ATCOSIM corpus, aiming to provide better performance in automatic speech recognition for air traffic control data.
(A better ASR model for ATC data is available here: https://huggingface.co/Jzuluaga/wav2vec2-xls-r-300m-en-atc-uwb-atcc-and-atcosim)
đ Quick Start
This model achieves the following results on the evaluation set:
- Loss: 0.0988
- Wer: 0.0736
Authors: Juan Zuluaga - Gomez, Amrutha Prasad, Iuliia Nigmatulina, Saeed Sarfjoo, Petr Motlicek, Matthias Kleinert, Hartmut Helmke, Oliver Ohneiser, Qingran Zhan
Abstract: Recent work on self - supervised pre - training focus on leveraging large - scale unlabeled speech data to build robust end - to - end (E2E) acoustic models (AM) that can be later fine - tuned on downstream tasks e.g., automatic speech recognition (ASR). Yet, few works investigated the impact on performance when the data properties substantially differ between the pre - training and fine - tuning phases, termed domain shift. We target this scenario by analyzing the robustness of Wav2Vec 2.0 and XLS - R models on downstream ASR for a completely unseen domain, air traffic control (ATC) communications. We benchmark these two models on several open - source and challenging ATC databases with signal - to - noise ratio between 5 and 20 dB. Relative word error rate (WER) reductions between 20% to 40% are obtained in comparison to hybrid - based ASR baselines by only fine - tuning E2E acoustic models with a smaller fraction of labeled data. We analyze WERs on the low - resource scenario and gender bias carried by one ATC dataset.
Code â GitHub repository: https://github.com/idiap/w2v2 - air - traffic
⨠Features
- Fine - tuned on air traffic control data, potentially more suitable for ATC communication scenarios.
- Achieved relatively low word error rate (WER) on the evaluation set.
đĻ Installation
If you use language model, you need to install the KenLM bindings with:
conda activate your_environment
pip install https://github.com/kpu/kenlm/archive/master.zip
đģ Usage Examples
Basic Usage
from datasets import load_dataset, load_metric, Audio
import torch
from transformers import AutoModelForCTC, Wav2Vec2Processor, Wav2Vec2ProcessorWithLM
import torchaudio.functional as F
USE_LM = False
DATASET_ID = "Jzuluaga/atcosim_corpus"
MODEL_ID = "Jzuluaga/wav2vec2-xls-r-300m-en-atc-atcosim"
# 1. Load the dataset
# we only load the 'test' partition, however, if you want to load the 'train' partition, you can change it accordingly
atcosim_corpus_test = load_dataset(DATASET_ID, "test", split="test")
# 2. Load the model
model = AutoModelForCTC.from_pretrained(MODEL_ID)
# 3. Load the processors, we offer support with LM, which should yield better resutls
if USE_LM:
processor = Wav2Vec2ProcessorWithLM.from_pretrained(MODEL_ID)
else:
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
# 4. Format the test sample
sample = next(iter(atcosim_corpus_test))
file_sampling_rate = sample['audio']['sampling_rate']
# resample if neccessary
if file_sampling_rate != 16000:
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), file_sampling_rate, 16000).numpy()
else:
resampled_audio = torch.tensor(sample["audio"]["array"]).numpy()
input_values = processor(resampled_audio, return_tensors="pt").input_values
# 5. Run the forward pass in the model
with torch.no_grad():
logits = model(input_values).logits
# get the transcription with processor
if USE_LM:
transcription = processor.batch_decode(logits.numpy()).text
else:
pred_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(pred_ids)
# print the output
print(transcription)
đ Documentation
Intended uses & limitations
This model was fine - tuned on air traffic control data. We don't expect that it keeps the same performance on some others datasets, e.g., LibriSpeech or CommonVoice.
Training and evaluation data
See Table 1 (page 3) in our paper: How Does Pre - trained Wav2Vec 2.0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications. We described there the partitions of how to use our model.
-
We use the ATCOSIM dataset for fine - tuning this model. You can download the raw data here: https://www.spsc.tugraz.at/databases - and - tools/atcosim - air - traffic - control - simulation - speech - corpus.html
-
However, do not worry, we have prepared the database in
Datasets format
. Here, ATCOSIM CORPUS on HuggingFace. You can scroll and check the train/test partitions, and even listen to some audios. -
If you want to prepare a database in HuggingFace format, you can follow the data loader script in: data_loader_atc.py.
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 20000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.9105 | 6.41 | 500 | 0.1622 | 0.1531 |
0.1119 | 12.82 | 1000 | 0.0971 | 0.0936 |
0.0614 | 19.23 | 1500 | 0.1002 | 0.0983 |
0.044 | 25.64 | 2000 | 0.1011 | 0.0929 |
0.0366 | 32.05 | 2500 | 0.0932 | 0.0828 |
0.0315 | 38.46 | 3000 | 0.0926 | 0.0880 |
0.0297 | 44.87 | 3500 | 0.0972 | 0.0882 |
0.0216 | 51.28 | 4000 | 0.0911 | 0.0774 |
0.0211 | 57.69 | 4500 | 0.0982 | 0.0891 |
0.0187 | 64.1 | 5000 | 0.1009 | 0.0863 |
0.02 | 70.51 | 5500 | 0.0953 | 0.0852 |
0.0163 | 76.92 | 6000 | 0.1028 | 0.0804 |
0.0128 | 83.33 | 6500 | 0.0930 | 0.0856 |
0.0127 | 89.74 | 7000 | 0.0892 | 0.0676 |
0.0116 | 96.15 | 7500 | 0.0857 | 0.0753 |
0.0139 | 102.56 | 8000 | 0.1078 | 0.0481 |
0.0107 | 108.97 | 8500 | 0.0955 | 0.0683 |
0.0096 | 115.38 | 9000 | 0.0846 | 0.0697 |
0.0089 | 121.79 | 9500 | 0.0854 | 0.0675 |
0.0084 | 128.21 | 10000 | 0.0875 | 0.0779 |
0.0074 | 134.62 | 10500 | 0.0840 | 0.0770 |
0.0061 | 141.03 | 11000 | 0.0903 | 0.0754 |
0.0076 | 147.44 | 11500 | 0.0872 | 0.0769 |
0.0069 | 153.85 | 12000 | 0.0891 | 0.0772 |
0.0061 | 160.26 | 12500 | 0.0971 | 0.0774 |
0.0049 | 166.67 | 13000 | 0.0984 | 0.0726 |
0.0045 | 173.08 | 13500 | 0.0952 | 0.0765 |
0.0039 | 179.49 | 14000 | 0.1015 | 0.0762 |
0.0031 | 185.9 | 14500 | 0.0937 | 0.0712 |
0.0032 | 192.31 | 15000 | 0.0982 | 0.0635 |
0.0028 | 198.72 | 15500 | 0.0981 | 0.0743 |
0.0024 | 205.13 | 16000 | 0.1019 | 0.0712 |
0.0024 | 211.54 | 16500 | 0.0957 | 0.0732 |
0.002 | 217.95 | 17000 | 0.0941 | 0.0732 |
0.0015 | 224.36 | 17500 | 0.1009 | 0.0717 |
0.0017 | 230.77 | 18000 | 0.0955 | 0.0730 |
0.0013 | 237.18 | 18500 | 0.0989 | 0.0732 |
0.0013 | 243.59 | 19000 | 0.0967 | 0.0738 |
0.0011 | 250.0 | 19500 | 0.0980 | 0.0734 |
0.0008 | 256.41 | 20000 | 0.0988 | 0.0736 |
Framework versions
- Transformers 4.24.0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.2
đ License
This model is licensed under the Apache - 2.0 license.
đ Cite us
If you use this code for your research, please cite our paper with:
@article{zuluaga2022how,
title={How Does Pre - trained Wav2Vec2. 0 Perform on Domain Shifted ASR? An Extensive Benchmark on Air Traffic Control Communications},
author={Zuluaga - Gomez, Juan and Prasad, Amrutha and Nigmatulina, Iuliia and Sarfjoo, Saeed and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
and,
@article{zuluaga2022bertraffic,
title={BERTraffic: BERT - based Joint Speaker Role and Speaker Change Detection for Air Traffic Control Communications},
author={Zuluaga - Gomez, Juan and Sarfjoo, Seyyed Saeed and Prasad, Amrutha and others},
journal={IEEE Spoken Language Technology Workshop (SLT), Doha, Qatar},
year={2022}
}
and,
@article{zuluaga2022atco2,
title={ATCO2 corpus: A Large - Scale Dataset for Research on Automatic Speech Recognition and Natural Language Understanding of Air Traffic Control Communications},
author={Zuluaga - Gomez, Juan and Vesel{\`y}, Karel and Sz{\"o}ke, Igor and Motlicek, Petr and others},
journal={arXiv preprint arXiv:2211.04054},
year={2022}
}

