๐ whisper-tiny-myanmar
This model is a fine - tuned version of openai/whisper-tiny on the chuuhtetnaing/myanmar-speech-dataset-openslr-80 dataset. It is designed for automatic speech recognition in the Myanmar language, offering a practical solution for transcribing Myanmar speech.
๐ Quick Start
This model is a fine - tuned version of openai/whisper-tiny on the chuuhtetnaing/myanmar-speech-dataset-openslr-80 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2353
- Wer: 61.8878
๐ป Usage Examples
Basic Usage
from datasets import Audio, load_dataset
from transformers import pipeline
dataset = load_dataset("chuuhtetnaing/myanmar-speech-dataset-openslr-80")
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
test_dataset = dataset['test']
input_speech = test_dataset[42]['audio']
pipe = pipeline(model='chuuhtetnaing/whisper-tiny-myanmar')
output = pipe(input_speech, generate_kwargs={"language": "myanmar", "task": "transcribe"})
print(output['text'])
๐ง Technical Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
No log |
1.0 |
18 |
1.2679 |
357.6135 |
1.483 |
2.0 |
36 |
1.0660 |
102.5378 |
1.0703 |
3.0 |
54 |
0.9530 |
106.3669 |
1.0703 |
4.0 |
72 |
0.8399 |
100.5343 |
0.8951 |
5.0 |
90 |
0.7728 |
107.6581 |
0.7857 |
6.0 |
108 |
0.7143 |
107.5245 |
0.6614 |
7.0 |
126 |
0.5174 |
104.4078 |
0.6614 |
8.0 |
144 |
0.3004 |
90.3384 |
0.3519 |
9.0 |
162 |
0.2447 |
82.4577 |
0.2165 |
10.0 |
180 |
0.2333 |
83.8825 |
0.2165 |
11.0 |
198 |
0.2022 |
77.0258 |
0.1532 |
12.0 |
216 |
0.1759 |
73.0632 |
0.1039 |
13.0 |
234 |
0.1852 |
72.0837 |
0.0675 |
14.0 |
252 |
0.1902 |
71.2823 |
0.0675 |
15.0 |
270 |
0.1882 |
70.5254 |
0.0517 |
16.0 |
288 |
0.2002 |
69.7240 |
0.0522 |
17.0 |
306 |
0.1965 |
67.7649 |
0.0522 |
18.0 |
324 |
0.1935 |
68.2102 |
0.0404 |
19.0 |
342 |
0.2132 |
67.9430 |
0.0308 |
20.0 |
360 |
0.2110 |
66.6963 |
0.0236 |
21.0 |
378 |
0.2141 |
65.9394 |
0.0236 |
22.0 |
396 |
0.2200 |
64.4702 |
0.0116 |
23.0 |
414 |
0.2227 |
63.4016 |
0.0055 |
24.0 |
432 |
0.2244 |
64.1585 |
0.0025 |
25.0 |
450 |
0.2254 |
62.4666 |
0.0025 |
26.0 |
468 |
0.2282 |
63.1790 |
0.0006 |
27.0 |
486 |
0.2320 |
61.7097 |
0.0002 |
28.0 |
504 |
0.2342 |
62.0659 |
0.0002 |
29.0 |
522 |
0.2350 |
62.0214 |
0.0001 |
30.0 |
540 |
0.2353 |
61.8878 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.14.5
- Tokenizers 0.15.1
๐ License
This model is licensed under the Apache 2.0 license.
๐ Model Information
Property |
Details |
Model Type |
Fine - tuned version of openai/whisper - tiny |
Training Data |
chuuhtetnaing/myanmar - speech - dataset - openslr - 80 |
Metrics |
Wer |
Pipeline Tag |
Automatic Speech Recognition |
Library Name |
Transformers |
Language |
Myanmar |