🚀 wav2vec2-large-xlsr-53-hungarian
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA - FOUNDATION/COMMON_VOICE_17_0 - HU dataset. It's designed for automatic speech recognition, achieving remarkable results on the evaluation set.
🚀 Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on the MOZILLA - FOUNDATION/COMMON_VOICE_17_0 - HU dataset.
It achieves the following results on the evaluation set:
The training and measured wer values differ due to ignored characters.
✨ Features
Model Comparison with the previous best wav2vec model (eval on CV17)
Model name |
WER |
CER |
jonatasgrosman/wav2vec2-large-xlsr-53-hungarian |
46.199835320230555 |
9.85170677112479 |
sarpba/wav2vec2-large-xlsr-53-hungarian |
17.27824914378453 |
3.151354554132789 |
Igonore characters on eval:
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
💻 Usage Examples
Basic Usage
import torch
import librosa
import re
import warnings
from datasets import load_dataset
import evaluate
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
LANG_ID = "hu"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-hungarian"
DEVICE = "cuda"
CHARS_TO_IGNORE = [",", "?", "¿", ".", "!", "¡", ";", ";", ":", '""', "%", '"', "�", "ʿ", "·", "჻", "~", "՞",
"؟", "،", "।", "॥", "«", "»", "„", "“", "”", "「", "」", "‘", "’", "《", "》", "(", ")", "[", "]",
"{", "}", "=", "`", "_", "+", "<", ">", "…", "–", "°", "´", "ʾ", "‹", "›", "©", "®", "—", "→", "。",
"、", "﹂", "﹁", "‧", "~", "﹏", ",", "{", "}", "(", ")", "[", "]", "【", "】", "‥", "〽",
"『", "』", "〝", "〟", "⟨", "⟩", "〜", ":", "!", "?", "♪", "؛", "/", "\\", "º", "−", "^", "ʻ", "ˆ"]
test_dataset = load_dataset("mozilla-foundation/common_voice_17_0", LANG_ID, split="test")
wer = evaluate.load("wer")
cer = evaluate.load("cer")
chars_to_ignore_regex = f"[{re.escape(''.join(CHARS_TO_IGNORE))}]"
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
model.to(DEVICE)
def speech_file_to_array_fn(batch):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = re.sub(chars_to_ignore_regex, "", batch["sentence"]).upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to(DEVICE), attention_mask=inputs.attention_mask.to(DEVICE)).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
predictions = [x.upper() for x in result["pred_strings"]]
references = [x.upper() for x in result["sentence"]]
print(f"WER: {wer.compute(predictions=predictions, references=references) * 100}")
print(f"CER: {cer.compute(predictions=predictions, references=references) * 100}")
📚 Documentation
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- distributed_type: multi - GPU
- num_devices: 2
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e - 08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 15.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
3.7968 |
1.0 |
758 |
0.2848 |
0.5295 |
0.2547 |
2.0 |
1516 |
0.1908 |
0.4222 |
0.1929 |
3.0 |
2274 |
0.1753 |
0.4000 |
0.1532 |
4.0 |
3032 |
0.1558 |
0.3710 |
0.1297 |
5.0 |
3790 |
0.1512 |
0.3536 |
0.1167 |
6.0 |
4548 |
0.1574 |
0.3514 |
0.101 |
7.0 |
5306 |
0.1483 |
0.3374 |
0.0859 |
8.0 |
6064 |
0.1490 |
0.3299 |
0.0791 |
9.0 |
6822 |
0.1523 |
0.3250 |
0.0702 |
10.0 |
7580 |
0.1608 |
0.3192 |
0.0629 |
11.0 |
8338 |
0.1664 |
0.3146 |
0.0559 |
12.0 |
9096 |
0.1641 |
0.3103 |
0.0527 |
13.0 |
9854 |
0.1665 |
0.3063 |
0.0468 |
14.0 |
10612 |
0.1691 |
0.3011 |
0.0443 |
15.0 |
11370 |
0.1748 |
0.2998 |
Framework versions
- Transformers 4.50.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
📄 License
This project is licensed under the Apache - 2.0 license.