đ Baybars/wav2vec2-xls-r-300m-cv8-turkish
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE - TR dataset. It can achieve high - quality automatic speech recognition for Turkish, providing accurate results in loss, WER, and CER.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the COMMON_VOICE - TR dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4164
- Wer: 0.3098
- Cer: 0.0764
⨠Features
- High - accuracy automatic speech recognition for Turkish.
- Fine - tuned on the COMMON_VOICE - TR dataset.
- Utilizes an N - gram language model trained on Turkish Wikipedia articles.
đĻ Installation
Please install unicode_tr package before running evaluation. It is used for Turkish text processing.
đģ Usage Examples
Evaluation on mozilla - foundation/common_voice_7_0
with split test
python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset mozilla-foundation/common_voice_8_0 --config tr --split test
Evaluation on speech - recognition - community - v2/dev_data
python eval.py --model_id Baybars/wav2vec2-xls-r-300m-cv8-turkish --dataset speech-recognition-community-v2/dev_data --config tr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Language Model
N - gram language model is trained by mpoyraz on a Turkish Wikipedia articles using KenLM and ngram - lm - wiki repo was used to generate arpa LM and convert it into binary format.
đ§ Technical Details
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 100.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
0.6356 |
9.09 |
500 |
0.5055 |
0.5536 |
0.1381 |
0.3847 |
18.18 |
1000 |
0.4002 |
0.4247 |
0.1065 |
0.3377 |
27.27 |
1500 |
0.4193 |
0.4167 |
0.1078 |
0.2175 |
36.36 |
2000 |
0.4351 |
0.3861 |
0.0974 |
0.2074 |
45.45 |
2500 |
0.3962 |
0.3622 |
0.0916 |
0.159 |
54.55 |
3000 |
0.4062 |
0.3526 |
0.0888 |
0.1882 |
63.64 |
3500 |
0.3991 |
0.3445 |
0.0850 |
0.1766 |
72.73 |
4000 |
0.4214 |
0.3396 |
0.0847 |
0.116 |
81.82 |
4500 |
0.4182 |
0.3265 |
0.0812 |
0.0718 |
90.91 |
5000 |
0.4259 |
0.3191 |
0.0781 |
0.019 |
100.0 |
5500 |
0.4164 |
0.3098 |
0.0764 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
đ License
This project is licensed under the Apache - 2.0 license.