🚀 XLSR Wav2Vec2 Spanish by Jonatas Grosman
This project adds a custom language model to the Spanish version of Wav2Vec2-Large-XLSR-53. It fine - tunes the facebook/wav2vec2-large-xlsr-53 model on Spanish data from Common Voice. The model is designed for automatic speech recognition, and it's important to ensure that the speech input is sampled at 16kHz.
✨ Features
- Fine - tuned for Spanish: Trained specifically on Spanish data from Common Voice to improve performance in Spanish speech recognition.
- GPU - supported training: Thanks to the GPU credits from OVHcloud, the model has been fine - tuned effectively.
- Multiple evaluation metrics: Evaluated using Word Error Rate (WER) and Character Error Rate (CER), both with and without a language model.
📦 Installation
No specific installation steps are provided in the original document.
💻 Usage Examples
Basic Usage
Using the ASRecognition library:
from asrecognition import ASREngine
asr = ASREngine("es", model_path="jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = asr.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "es"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
Prediction Results
Reference |
Prediction |
HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. |
HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS |
OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. |
OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN |
PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. |
PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN |
TRES |
TRES |
REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. |
REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA |
EN LOS AÑOS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. |
EN LOS AÑOS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES |
SE ESTÁ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. |
SE ESTÓ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS |
SÍ |
SÍ |
"FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESÓ." |
FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESÓ |
SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. |
SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PÍOCOSUR |
📚 Documentation
Evaluation
- To evaluate on
mozilla-foundation/common_voice_6_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0
📄 License
This model is licensed under the Apache 2.0 license.
📚 Model Index
- Name: XLSR Wav2Vec2 Spanish by Jonatas Grosman
- Results:
- Task: Automatic Speech Recognition
- Dataset: Common Voice es
- Metrics:
- Test WER: 8.82
- Test CER: 2.58
- Test WER (+LM): 6.27
- Test CER (+LM): 2.06
- Task: Automatic Speech Recognition
- Dataset: Robust Speech Event - Dev Data
- Metrics:
- Dev WER: 30.19
- Dev CER: 13.56
- Dev WER (+LM): 24.71
- Dev CER (+LM): 12.61
📖 Citation
If you want to cite this model you can use this:
@misc{grosman2021wav2vec2-large-xlsr-53-spanish,
title={XLSR Wav2Vec2 Spanish by Jonatas Grosman},
author={Grosman, Jonatas},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}},
year={2021}
}
📋 Information Table
Property |
Details |
Model Type |
XLSR Wav2Vec2 Spanish |
Training Data |
Common Voice, mozilla - foundation/common_voice_6_0 |
Metrics |
WER, CER |
Tags |
audio, automatic - speech - recognition, es, hf - asr - leaderboard, mozilla - foundation/common_voice_6_0, robust - speech - event, speech, xlsr - fine - tuning - week |