đ wav2vec2-xls-r-300m-ca
This is a fine - tuned speech recognition model based on facebook/wav2vec2-xls-r-300m
. It has been trained on multiple Catalan datasets, achieving good results in speech recognition tasks.
đ Quick Start
This README does not provide specific quick - start steps. You may need to refer to the original model's documentation or relevant code repositories for detailed usage instructions.
⨠Features
- Fine - tuned on Multiple Datasets: Trained on MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - CA, tv3_parla and [parlament_parla](https://huggingface.co/datasets/projecte - aina/parlament_parla) datasets.
- Good Performance: Achieves relatively low WER (Word Error Rate) and CER (Character Error Rate) on the evaluation set.
đ Documentation
Model description
Please check the original facebook/wav2vec2-xls-r-1b Model card. This is just a finetuned version of that model.
Intended uses & limitations
As any model trained on crowdsourced data, this model can show the biases and particularities of the data and model used to train this model. Moreover, since this is a speech recognition model, it may underperform for some lower - resourced dialects for the Catalan language.
Training and evaluation data
More information needed
Training procedure
The data is preprocessed to remove characters not on the Catalan alphabet. Moreover, numbers are verbalized using code provided by @ccoreilly, which can be found on the text/ folder or [here](https://github.com/CollectivaT - dev/catotron - cpu/blob/master/text/numbers_ca.py).
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e - 05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 18.0
- mixed_precision_training: Native AMP
Training results
Check the Tensorboard tab to check the training profile and evaluation results along training. The model was evaluated on the test splits for each of the datasets used during training.
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
6.2099 |
0.09 |
500 |
3.4125 |
1.0 |
2.9961 |
0.18 |
1000 |
2.9224 |
1.0 |
2.2147 |
0.26 |
1500 |
0.6521 |
0.5568 |
1.3017 |
0.35 |
2000 |
0.3153 |
0.2761 |
1.1196 |
0.44 |
2500 |
0.2444 |
0.2367 |
1.0712 |
0.53 |
3000 |
0.2324 |
0.2132 |
1.052 |
0.62 |
3500 |
0.2173 |
0.2032 |
1.2813 |
2.13 |
4000 |
0.3326 |
0.2099 |
1.2365 |
2.4 |
4500 |
0.3224 |
0.2003 |
1.2193 |
2.66 |
5000 |
0.3198 |
0.1957 |
1.2072 |
2.93 |
5500 |
0.3063 |
0.1933 |
1.213 |
3.2 |
6000 |
0.3051 |
0.1980 |
1.2074 |
3.46 |
6500 |
0.3012 |
0.1879 |
1.1918 |
3.73 |
7000 |
0.2947 |
0.1829 |
1.1893 |
4.0 |
7500 |
0.2895 |
0.1807 |
1.1751 |
4.26 |
8000 |
0.2878 |
0.1776 |
1.1628 |
4.53 |
8500 |
0.2835 |
0.1731 |
1.1577 |
4.79 |
9000 |
0.2816 |
0.1761 |
1.1448 |
5.06 |
9500 |
0.2757 |
0.1740 |
1.1407 |
5.33 |
10000 |
0.2768 |
0.1798 |
1.1401 |
5.59 |
10500 |
0.2780 |
0.1816 |
1.1333 |
5.86 |
11000 |
0.2748 |
0.1750 |
1.1571 |
6.13 |
11500 |
0.2808 |
0.1708 |
1.1505 |
6.39 |
12000 |
0.2726 |
0.1692 |
1.1519 |
6.66 |
12500 |
0.2749 |
0.1654 |
1.136 |
6.93 |
13000 |
0.2765 |
0.1643 |
1.1326 |
7.19 |
13500 |
0.2706 |
0.1668 |
1.1342 |
7.46 |
14000 |
0.2665 |
0.1638 |
1.1286 |
7.72 |
14500 |
0.2669 |
0.1636 |
1.1243 |
7.99 |
15000 |
0.2619 |
0.1623 |
1.1173 |
8.26 |
15500 |
0.2652 |
0.1604 |
1.1129 |
8.52 |
16000 |
0.2610 |
0.1598 |
1.1091 |
8.79 |
16500 |
0.2608 |
0.1584 |
1.1053 |
9.06 |
17000 |
0.2633 |
0.1664 |
1.1004 |
9.32 |
17500 |
0.2594 |
0.1662 |
1.0995 |
9.59 |
18000 |
0.2623 |
0.1569 |
1.0964 |
9.86 |
18500 |
0.2624 |
0.1597 |
1.09 |
10.12 |
19000 |
0.2577 |
0.1578 |
1.089 |
10.39 |
19500 |
0.2574 |
0.1531 |
1.0864 |
10.66 |
20000 |
0.2556 |
0.1546 |
1.0806 |
10.92 |
20500 |
0.2548 |
0.1583 |
1.0842 |
11.19 |
21000 |
0.2550 |
0.1542 |
1.0805 |
11.45 |
21500 |
0.2561 |
0.1524 |
1.0722 |
11.72 |
22000 |
0.2540 |
0.1566 |
1.0763 |
11.99 |
22500 |
0.2549 |
0.1572 |
1.0835 |
12.25 |
23000 |
0.2586 |
0.1521 |
1.0883 |
12.52 |
23500 |
0.2583 |
0.1519 |
1.0888 |
12.79 |
24000 |
0.2551 |
0.1582 |
1.0933 |
13.05 |
24500 |
0.2628 |
0.1537 |
1.0799 |
13.32 |
25000 |
0.2600 |
0.1508 |
1.0804 |
13.59 |
25500 |
0.2620 |
0.1475 |
1.0814 |
13.85 |
26000 |
0.2537 |
0.1517 |
1.0693 |
14.12 |
26500 |
0.2560 |
0.1542 |
1.0724 |
14.38 |
27000 |
0.2540 |
0.1574 |
1.0704 |
14.65 |
27500 |
0.2548 |
0.1626 |
1.0729 |
14.92 |
28000 |
0.2548 |
0.1601 |
1.0724 |
15.18 |
28500 |
0.2511 |
0.1512 |
1.0655 |
15.45 |
29000 |
0.2498 |
0.1490 |
1.0608 |
15.98 |
30000 |
0.2487 |
0.1481 |
1.0541 |
16.52 |
31000 |
0.2468 |
0.1504 |
1.0584 |
17.05 |
32000 |
0.2467 |
0.1493 |
1.0507 |
17.58 |
33000 |
0.2481 |
0.1517 |
Framework versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.1+cu102
- Datasets 1.18.3
- Tokenizers 0.11.0
đ License
The model is licensed under the Apache - 2.0 license.
Thanks
Want to thank both @ccoreilly and @gullabi who have contributed with their own resources and knowledge into making this model possible.
Information Table
Property |
Details |
Model Type |
wav2vec2 - xls - r - 300m - ca |
Training Data |
mozilla - foundation/common_voice_8_0, collectivat/tv3_parla, projecte - aina/parlament_parla |
Results Table
Task |
Dataset |
Metrics (Test) |
Value |
Speech Recognition |
mozilla - foundation/common_voice_8_0 ca |
WER |
13.170091241317552 |
Speech Recognition |
mozilla - foundation/common_voice_8_0 ca |
CER |
3.356726205534543 |
Speech Recognition |
projecte - aina/parlament_parla ca |
WER |
8.048005647723261 |
Speech Recognition |
projecte - aina/parlament_parla ca |
CER |
2.240912911020065 |
Speech Recognition |
collectivat/tv3_parla ca |
WER |
23.320629787889285 |
Speech Recognition |
collectivat/tv3_parla ca |
CER |
10.439216202089989 |
Speech Recognition |
speech - recognition - community - v2/dev_data ca |
WER |
31.99671115046487 |
Speech Recognition |
speech - recognition - community - v2/dev_data ca |
CER |
15.820020687277325 |
Automatic Speech Recognition |
Robust Speech Event - Test Data |
WER |
22.04 |