đ Wav2Vec2-Large-XLSR-53-Tamil
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Tamil using the Common Voice dataset. It's designed for speech recognition tasks in Tamil.
đ Model Information
Property |
Details |
Model Type |
thanish wav2vec2-large-xlsr-tamil |
Training Data |
Common Voice (train, validation) |
License |
apache-2.0 |
Metrics |
WER (Test WER: 100.00 on Common Voice ta) |
â ī¸ Important Note
When using this model, make sure that your speech input is sampled at 16kHz.
đ Quick Start
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the Tamil language, leveraging the Common Voice dataset.
⨠Features
- Fine-tuned on Tamil language data from Common Voice.
- Suitable for automatic speech recognition tasks in Tamil.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "{lang_id}", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("{model_id}")
model = Wav2Vec2ForCTC.from_pretrained("{model_id}")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Tamil test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "{lang_id}", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("{model_id}")
model = Wav2Vec2ForCTC.from_pretrained("{model_id}")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\"\\\\â]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result
Test Result: 100.00 %
đ§ Technical Details
The Common Voice train
, validation
were used for training. The script used for training can be found https://colab.research.google.com/drive/1PC2SjxpcWMQ2qmRw21NbP38wtQQUa5os#scrollTo=YKBZdqqJG9Tv
đ License
This model is released under the apache-2.0 license.