đ Wav2Vec2-Large-XLSR-53-Kannada
This model is fine - tuned from facebook/wav2vec2-large-xlsr-53 on Kannada using the OpenSLR SLR79 dataset. Ensure your speech input is sampled at 16kHz when using it.
đ Metadata
Property |
Details |
Language |
Kannada |
Datasets |
openslr |
Metrics |
wer |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
License |
apache - 2.0 |
đ Model Index
- Name: XLSR Wav2Vec2 Large 53 Kannada by Amogh Gopadi
- Results:
- Task:
- Name: Speech Recognition
- Type: automatic - speech - recognition
- Dataset:
- Name: OpenSLR kn
- Type: openslr
- Metrics:
- Name: Test WER
- Type: wer
- Value: 27.08
đ Quick Start
Fine - tuned facebook/wav2vec2-large-xlsr-53 on Kannada using the OpenSLR SLR79 dataset. When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine - tuned on the Kannada language using the OpenSLR SLR79 dataset.
- Can be used for automatic speech recognition tasks in Kannada.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows, assuming you have a dataset with Kannada sentence
and path
fields:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on 10% of the Kannada data on OpenSLR.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model = Wav2Vec2ForCTC.from_pretrained("amoghsgopadi/wav2vec2-large-xlsr-kn")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\%\â\â\īŋŊ\â\âĻ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"),
attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 27.08 %
đ Documentation
Training
90% of the OpenSLR Kannada dataset was used for training.
The colab notebook used for training can be found here.
đ License
This model is licensed under the apache - 2.0 license.