Wav2vec2 Large Xlsr 53 Turkish
A Turkish speech recognition model fine-tuned on the Common Voice dataset based on Facebook's wav2vec2-large-xlsr-53 model
Downloads 68
Release Time : 3/2/2022
Model Overview
This is an automatic speech recognition (ASR) model specifically designed for Turkish, capable of converting Turkish speech into text.
Model Features
Turkish optimization
Fine-tuned specifically for Turkish, handling unique Turkish characters and pronunciation characteristics
High performance
Achieves a word error rate (WER) of 17.46% on the Common Voice Turkish test set
No language model required
Can be used directly without additional language model support
Model Capabilities
Turkish speech recognition
16kHz audio processing
Use Cases
Speech-to-text
Speech transcription
Convert Turkish speech content into text
Accuracy rate of 82.54% (WER 17.46%)
đ Wav2Vec2-Large-XLSR-53-Turkish
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Turkish using the Common Voice. It's designed for automatic speech recognition in Turkish.
Model Information
Property | Details |
---|---|
Model Type | Wav2Vec2-Large-XLSR-53-Turkish |
Training Data | Common Voice tr |
Metrics | WER (Word Error Rate) |
License | Apache-2.0 |
Results
Task | Dataset | Metrics |
---|---|---|
Speech Recognition (automatic-speech-recognition) | Common Voice tr | Test WER: 17.46 |
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine-tuned on Turkish using the Common Voice dataset.
- Can be used directly for speech recognition without a language model.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from unicode_tr import unicode_tr
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Turkish test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "tr", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
model = Wav2Vec2ForCTC.from_pretrained("aniltrkkn/wav2vec2-large-xlsr-53-turkish")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\â]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = str(unicode_tr(re.sub(chars_to_ignore_regex, "", batch["sentence"])).lower())
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 17.46 %
đ§ Technical Details
- Case Conversion: The
unicode_tr
package is used for converting sentences to lower case since the regularlower()
method does not work well with Turkish. - Training Approach: Since training data is very limited for Turkish, all data is employed with a K-Fold (k=5) training approach. The best model out of the 5 trainings is uploaded.
- Training Arguments: --num_train_epochs="30" \ --per_device_train_batch_size="32" \ --evaluation_strategy="steps" \ --activation_dropout="0.055" \ --attention_dropout="0.094" \ --feat_proj_dropout="0.04" \ --hidden_dropout="0.047" \ --layerdrop="0.041" \ --learning_rate="2.34e-4" \ --mask_time_prob="0.082" \ --warmup_steps="250" \
All trainings took ~20 hours with a GeForce RTX 3090 Graphics Card.
đ License
This model is licensed under the Apache-2.0 license.
Voice Activity Detection
MIT
Voice activity detection model based on pyannote.audio 2.1, used to identify speech activity segments in audio
Speech Recognition
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
This is a fine-tuned XLSR-53 large model for Portuguese speech recognition tasks, trained on the Common Voice 6.1 dataset, supporting Portuguese speech-to-text conversion.
Speech Recognition Other
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper is an advanced automatic speech recognition (ASR) and speech translation model proposed by OpenAI, trained on over 5 million hours of labeled data, with strong cross-dataset and cross-domain generalization capabilities.
Speech Recognition Supports Multiple Languages
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper is a state-of-the-art automatic speech recognition (ASR) and speech translation model developed by OpenAI, trained on over 5 million hours of labeled data, demonstrating strong generalization capabilities in zero-shot settings.
Speech Recognition
Transformers Supports Multiple Languages

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
A Russian speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampled audio input
Speech Recognition Other
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
A Chinese speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input.
Speech Recognition Chinese
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
A Dutch speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, trained on the Common Voice and CSS10 datasets, supporting 16kHz audio input.
Speech Recognition Other
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
Japanese speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input
Speech Recognition Japanese
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
A text-to-audio forced alignment tool based on Hugging Face pre-trained models, supporting multiple languages with high memory efficiency
Speech Recognition
Transformers Supports Multiple Languages

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
Arabic speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, trained on Common Voice and Arabic speech corpus
Speech Recognition Arabic
W
jonatasgrosman
2.3M
37
Featured Recommended AI Models
Š 2025AIbase