đ XLS-R-300M - Hausa
This is a fine - tuned model based on facebook/wav2vec2-xls-r-300m on the common_voice dataset. It offers high - performance speech recognition capabilities for Hausa language, with specific evaluation results on the dataset.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the common_voice dataset.
It achieves the following results on the evaluation set:
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 13
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 1000
- num_epochs: 100
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
2.9599 |
6.56 |
400 |
2.8650 |
1.0 |
2.7357 |
13.11 |
800 |
2.7377 |
0.9951 |
1.3012 |
19.67 |
1200 |
0.6686 |
0.7111 |
1.0454 |
26.23 |
1600 |
0.5686 |
0.6137 |
0.9069 |
32.79 |
2000 |
0.5576 |
0.5815 |
0.82 |
39.34 |
2400 |
0.5502 |
0.5591 |
0.7413 |
45.9 |
2800 |
0.5970 |
0.5586 |
0.6872 |
52.46 |
3200 |
0.5817 |
0.5428 |
0.634 |
59.02 |
3600 |
0.5636 |
0.5314 |
0.6022 |
65.57 |
4000 |
0.5780 |
0.5229 |
0.5705 |
72.13 |
4400 |
0.6036 |
0.5323 |
0.5408 |
78.69 |
4800 |
0.6119 |
0.5336 |
0.5225 |
85.25 |
5200 |
0.6105 |
0.5270 |
0.5265 |
91.8 |
5600 |
0.6034 |
0.5231 |
0.5154 |
98.36 |
6000 |
0.6094 |
0.5234 |
Framework versions
- Transformers 4.16.1
- Pytorch 1.10.0+cu111
- Datasets 1.18.2
- Tokenizers 0.11.0
Evaluation Commands
- To evaluate on
mozilla - foundation/common_voice_8_0
with split test
python eval.py --model_id anuragshas/wav2vec2-large-xls-r-300m-ha-cv8 --dataset mozilla-foundation/common_voice_8_0 --config ha --split test
đģ Usage Examples
Basic Usage
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-large-xls-r-300m-ha-cv8"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "ha", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Advanced Usage
Eval results on Common Voice 8 "test" (WER):
Without LM |
With LM (run ./eval.py ) |
47.821 |
36.295 |
đ License
This project is licensed under the Apache - 2.0 license.