Model Overview
Model Features
Model Capabilities
Use Cases
đ Wav2Vec2-Large-XLSR-53-Estonian
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 in Estonian using the Common Voice. It can be used for automatic speech recognition tasks. Ensure your speech input is sampled at 16kHz when using this model.
đ Model Information
Property | Details |
---|---|
Language | Estonian |
Datasets | Common Voice |
Tags | audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
License | apache - 2.0 |
Model Name | XLSR Wav2Vec2 Estonian by Birger Moell |
Task | Speech Recognition (automatic - speech - recognition) |
Dataset Name | Common Voice Estonian |
Dataset Type | common_voice |
Test WER | 36.951816 |
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine - tuned from facebook/wav2vec2-large-xlsr-53 for Estonian speech recognition.
- Can be used directly without a language model.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "et", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian")
model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The advanced usage here is the evaluation process of the model.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "fi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian")
model = Wav2Vec2ForCTC.from_pretrained("birgermoell/wav2vec2-large-xlrs-estonian")
model.to("cuda")
chars_to_ignore_regex = '[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\,\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\?\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\â]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
# Preprocessing the datasets.
# We need to read the aduio files as arrays
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
đ Documentation
Test Result: WER: 36.951816
đ§ Technical Details
The Common Voice train
and validation
datasets were used for training.
The script used for training can be found here
https://colab.research.google.com/drive/1VcWT92vBCwVn - 5d - mkYxhgILPr11OHfR?usp=sharing
đ License
This model is licensed under the apache - 2.0 license.

