🚀 Wav2Vec2-Large-XLSR-Breton
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on the Breton Common Voice dataset. When using this model, ensure that your speech input is sampled at 16kHz.
Model Information
Property |
Details |
Language |
Breton |
Datasets |
Common Voice |
Metrics |
Word Error Rate (WER) |
Tags |
Audio, Automatic Speech Recognition, Speech, XLSR Fine - Tuning Week |
License |
Apache 2.0 |
Model Name |
XLSR Wav2Vec2 Breton by Cahya |
Task |
Speech Recognition (Automatic Speech Recognition) |
Dataset Name |
Common Voice br |
Test WER |
41.71 |
🚀 Quick Start
The model can be used directly (without a language model) as described below.
💻 Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "br", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
batch["sentence"] = batch["sentence"].replace("ʼ", "'")
batch["sentence"] = batch["sentence"].replace("’", "'")
batch["sentence"] = batch["sentence"].replace('‘', "'")
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
The above code leads to the following prediction for the first two samples:
Prediction: ["ne' ler ket don a-benn us netra pa vez zer nic'hed evel-si", 'an eil hag egile']
Reference: ['"n\'haller ket dont a-benn eus netra pa vezer nec\'het evel-se." ', 'an eil hag egile. ']
Advanced Usage
The model can be evaluated as follows on the Breton test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "br", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-breton")
model.to("cuda")
chars_to_ignore_regex = '[\\,\,\?\.\!\;\:\"\“\%\”\�\(\)\/\«\»\½\…]'
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
batch["sentence"] = batch["sentence"].replace("ʼ", "'")
batch["sentence"] = batch["sentence"].replace("’", "'")
batch["sentence"] = batch["sentence"].replace('‘', "'")
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 41.71 %
🔧 Training
The Common Voice train
, validation
, and ... datasets were used for training as well as ... and ... # TODO
The script used for training can be found here
(will be available soon)
📄 License
This model is released under the Apache 2.0 license.