๐ Wav2Vec2-Large-XLSR-Turkish
This is a fine - tuned facebook/wav2vec2-large-xlsr-53 model on the Turkish Artificial Common Voice dataset, which can be used for automatic speech recognition.
๐ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
โจ Features
- Language: Turkish
- Datasets: Common Voice
- Metrics: Word Error Rate (WER)
- Tags: audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week
- License: Apache 2.0
Property |
Details |
Model Type |
XLSR Wav2Vec2 Turkish with Artificial Voices by Cahya |
Training Data |
Turkish Artificial Common Voice dataset (train , validation ) |
๐ฆ Installation
No specific installation steps are provided in the original README. However, you need to have the necessary Python libraries installed, such as torch
, torchaudio
, datasets
, and transformers
. You can install them using pip
:
pip install torch torchaudio datasets transformers
๐ป Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "tr", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-turkish-artificial")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\โ\โ\โ\'\`โฆ\โยปยซ]'
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
resampler = torchaudio.transforms.Resample(sampling_rate, 16_000)
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 66.98 %
๐ Documentation
The model can be evaluated on the Turkish test data of Common Voice as shown in the advanced usage example.
The Artificial Common Voice train
, validation
is used to fine - tune the model. The script used for training can be found here
๐ License
This project is licensed under the Apache 2.0 license.