đ Automatic Speech Recognition for Luganda
This model is designed for the Mozilla Luganda Automatic Speech Recognition competition, aiming to provide accurate automatic speech recognition for Luganda.
đ Quick Start
This is the model built for the Mozilla Luganda Automatic Speech Recognition competition. It is a fine - tuned facebook/wav2vec2-large-xlsr-53 model on the Luganda Common Voice dataset version 7.0.
We also provide a live demo to test the model.
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Built for the Mozilla Luganda Automatic Speech Recognition competition.
- Fine - tuned on the Luganda Common Voice dataset version 7.0.
- A live demo is provided for testing.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lg", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
if "audio" in batch:
speech_array = torch.tensor(batch["audio"]["array"])
else:
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset[:2]["sentence"])
đ Documentation
Evaluation
The model can be evaluated as follows on the Indonesian test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "lg", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("indonesian-nlp/wav2vec2-luganda")
model = Wav2Vec2ForCTC.from_pretrained("indonesian-nlp/wav2vec2-luganda")
model.to("cuda")
chars_to_ignore = [",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "īŋŊ", "â", "â", "â"]
chars_to_ignore_regex = f'[{"".join(chars_to_ignore)}]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
if "audio" in batch:
speech_array = torch.tensor(batch["audio"]["array"])
else:
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
WER without KenLM: 15.38 %
WER With KenLM:
Test Result: 7.53 %
Training
The Common Voice train
, validation
, and ... datasets were used for training as well as ... and ... # TODO
The script used for training can be found here
đ License
The license of this project is apache - 2.0.
Information Table
Property |
Details |
Model Type |
Automatic Speech Recognition for Luganda |
Training Data |
Common Voice train , validation datasets (more details to be added) |
Datasets |
mozilla - foundation/common_voice_7_0 |
Metrics |
wer |
Tags |
audio, automatic - speech - recognition, common_voice, hf - asr - leaderboard, lg, robust - speech - event, speech |
Important Note
â ī¸ Important Note
When using this model, make sure that your speech input is sampled at 16kHz.