🚀 Machine Translation
This project presents an mT5-based model designed for machine translation, specifically focusing on translating text from Persian to English. It offers a practical solution for those seeking accurate Persian-to-English translations.
🚀 Quick Start
This is an mT5-based model for machine translation (Persian -> English).
Here is an example of how you can run this model:
from transformers import MT5ForConditionalGeneration, MT5Tokenizer
model_name = "SeyedAli/Persian-to-English-Translation-mT5-V1"
tokenizer = MT5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
def run_model(input_string, **generator_args):
input_ids = tokenizer.encode(input_string, return_tensors="pt")
res = model.generate(input_ids, **generator_args)
output = tokenizer.batch_decode(res, skip_special_tokens=True)
print(output)
return output
run_model("ستایش خدای را که پروردگار جهانیان است.")
run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه میکند؛")
run_model("وی از تمامی بلاگرها، سازمانها و افرادی که از وی پشتیبانی کردهاند، تشکر کرد.")
run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ")
run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟")
💻 Usage Examples
Basic Usage
from transformers import MT5ForConditionalGeneration, MT5Tokenizer
model_name = "SeyedAli/Persian-to-English-Translation-mT5-V1"
tokenizer = MT5Tokenizer.from_pretrained(model_name)
model = MT5ForConditionalGeneration.from_pretrained(model_name)
def run_model(input_string, **generator_args):
input_ids = tokenizer.encode(input_string, return_tensors="pt")
res = model.generate(input_ids, **generator_args)
output = tokenizer.batch_decode(res, skip_special_tokens=True)
print(output)
return output
run_model("ستایش خدای را که پروردگار جهانیان است.")
run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه میکند؛")
run_model("وی از تمامی بلاگرها، سازمانها و افرادی که از وی پشتیبانی کردهاند، تشکر کرد.")
run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ")
run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟")
Advanced Usage
run_model("ستایش خدای را که پروردگار جهانیان است.")
['Adoration of God, the Lord of the world.']
run_model("در هاید پارک کرنر بر گلدانی ایستاده موعظه میکند؛")
['At the High End of the Park, Conrad stands on a vase preaching;']
run_model("وی از تمامی بلاگرها، سازمانها و افرادی که از وی پشتیبانی کردهاند، تشکر کرد.")
['She thanked all the bloggers, organizations, and men who had supported her.']
run_model("مشابه سال ۲۰۰۱، تولید آمونیاک بی آب در ایالات متحده در سال ۲۰۰۰ تقریباً ۱۷،۴۰۰،۰۰۰ تن (معادل بدون آب) با مصرف ظاهری ۲۲،۰۰۰،۰۰۰ تن و حدود ۴۶۰۰۰۰۰ با واردات خالص مواجه شد. ")
['In 2000, the lack of water ammonia in the United States was almost']
run_model("می خواهم دکترای علوم کامپیوتر راجع به شبکه های اجتماعی را دنبال کنم، چالش حل نشده در شبکه های اجتماعی چیست؟")
['I want to follow the computer science doctorate on social networks. What is the unsolved challenge']
📄 License
The model is released under the MIT license.
📋 Information Table