🚀 mBART-50 one to many multilingual machine translation GGML
This model is designed for multilingual machine translation, enabling English to be translated into 49 other languages. It is a fine - tuned version based on a specific checkpoint, offering efficient and accurate translation capabilities.
🚀 Quick Start
This model is a fine - tuned checkpoint of TheBloke - Llama - 2 - 13B. mbart-large-50-one-to-many-mmt
is fine - tuned for multilingual machine translation. It was introduced in Multilingual Translation with Extensible Multilingual Pretraining and Finetuning paper.
The model can translate English to other 49 languages mentioned below. To translate into a target language, the target language id is forced as the first generated token. To force the target language id as the first generated token, pass the forced_bos_token_id
parameter to the generate
method.
💻 Usage Examples
Basic Usage
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
article_en = "The head of the United Nations says there is no military solution in Syria"
model = MBartForConditionalGeneration.from_pretrained("SnypzZz/Llama2-13b-Language-translate")
tokenizer = MBart50TokenizerFast.from_pretrained("SnypzZz/Llama2-13b-Language-translate", src_lang="en_XX")
model_inputs = tokenizer(article_en, return_tensors="pt")
generated_tokens = model.generate(
**model_inputs,
forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]
)
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
generated_tokens = model.generate(
**model_inputs,
forced_bos_token_id=tokenizer.lang_code_to_id["zh_CN"]
)
tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
📚 Documentation
Languages covered
Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI)
BibTeX entry and citation info
@article{tang2020multilingual,
title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning},
author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan},
year={2020},
eprint={2008.00401},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
📄 Additional Information
Discord
For further support, and discussions on these models and AI in general, join us at:
SnypzZz's Discord server
PS i am a real gaming fanatic and this is also my gaming server
so if anyone wants to play VALORANT or any other games, feel free to ping me--- @SNYPER#1942.
Instagram
SnypzZz's Instagram
LinkedIn
SnypzZz's LinkedIn profile
📦 Model Information
Property |
Details |
Model Type |
mBART - 50 one to many multilingual machine translation GGML |
Tags |
transformers, text - generation - inference, code, PyTorch |
Library Name |
transformers |
Supported Languages |
Arabic (ar_AR), Czech (cs_CZ), German (de_DE), English (en_XX), Spanish (es_XX), Estonian (et_EE), Finnish (fi_FI), French (fr_XX), Gujarati (gu_IN), Hindi (hi_IN), Italian (it_IT), Japanese (ja_XX), Kazakh (kk_KZ), Korean (ko_KR), Lithuanian (lt_LT), Latvian (lv_LV), Burmese (my_MM), Nepali (ne_NP), Dutch (nl_XX), Romanian (ro_RO), Russian (ru_RU), Sinhala (si_LK), Turkish (tr_TR), Vietnamese (vi_VN), Chinese (zh_CN), Afrikaans (af_ZA), Azerbaijani (az_AZ), Bengali (bn_IN), Persian (fa_IR), Hebrew (he_IL), Croatian (hr_HR), Indonesian (id_ID), Georgian (ka_GE), Khmer (km_KH), Macedonian (mk_MK), Malayalam (ml_IN), Mongolian (mn_MN), Marathi (mr_IN), Polish (pl_PL), Pashto (ps_AF), Portuguese (pt_XX), Swedish (sv_SE), Swahili (sw_KE), Tamil (ta_IN), Telugu (te_IN), Thai (th_TH), Tagalog (tl_XX), Ukrainian (uk_UA), Urdu (ur_PK), Xhosa (xh_ZA), Galician (gl_ES), Slovene (sl_SI) |