Pegasus Indian Legal
This model is a legal text summarization model fine-tuned on Indian legal datasets based on legal-pegasus
Downloads 104
Release Time : 12/8/2023
Model Overview
A Pegasus summarization model optimized for Indian legal texts, capable of generating concise summaries of legal documents
Model Features
Legal Domain Optimization
Specifically fine-tuned for Indian legal texts, better understanding legal terminology and structure
Efficient Summarization
Capable of extracting key information from lengthy legal documents to generate concise summaries
Model Capabilities
Legal Text Summarization
Key Information Extraction
Document Compression
Use Cases
Legal Industry
Legal Document Summarization
Quickly generate summaries of case documents for lawyers and judges
Saves reading time for legal professionals
Legal Research Assistance
Help researchers quickly browse through large volumes of legal literature
Improves legal research efficiency
đ pegasus_indian_legal
This model is a fine - tuned version of nsi319/legal-pegasus, designed to handle Indian legal data from ninadn/indian-legal, achieving a loss of 3.8207 on the evaluation set.
đ Quick Start
This model is a fine - tuned version of nsi319/legal-pegasus on ninadn/indian-legal. It achieves the following results on the evaluation set:
- Loss: 3.8207
đ Documentation
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
đ§ Technical Details
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e - 05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
8.1139 | 0.01 | 5 | 7.1952 |
7.7414 | 0.01 | 10 | 6.8118 |
6.6586 | 0.01 | 15 | 6.6204 |
6.1226 | 0.02 | 20 | 6.5303 |
6.7833 | 0.03 | 25 | 6.4668 |
5.9004 | 0.03 | 30 | 6.4014 |
7.1037 | 0.04 | 35 | 6.3302 |
6.4414 | 0.04 | 40 | 6.2744 |
7.0245 | 0.04 | 45 | 6.2331 |
7.4426 | 0.05 | 50 | 6.1970 |
7.4032 | 0.06 | 55 | 6.1663 |
6.2171 | 0.06 | 60 | 6.1440 |
8.762 | 0.07 | 65 | 6.1259 |
7.9691 | 0.07 | 70 | 6.0915 |
7.8924 | 0.07 | 75 | 6.0554 |
5.6221 | 0.08 | 80 | 6.0259 |
6.3625 | 0.09 | 85 | 5.9976 |
6.7371 | 0.09 | 90 | 5.9720 |
6.3414 | 0.1 | 95 | 5.9505 |
6.1663 | 0.1 | 100 | 5.9328 |
5.1981 | 0.1 | 105 | 5.9121 |
6.8607 | 0.11 | 110 | 5.8904 |
6.8116 | 0.12 | 115 | 5.8700 |
5.9565 | 0.12 | 120 | 5.8479 |
5.5946 | 0.12 | 125 | 5.8239 |
6.856 | 0.13 | 130 | 5.7999 |
6.2926 | 0.14 | 135 | 5.7736 |
6.7472 | 0.14 | 140 | 5.7444 |
6.5017 | 0.14 | 145 | 5.7151 |
7.1512 | 0.15 | 150 | 5.6817 |
6.7095 | 0.15 | 155 | 5.6471 |
6.2288 | 0.16 | 160 | 5.6049 |
5.65 | 0.17 | 165 | 5.5605 |
5.922 | 0.17 | 170 | 5.5073 |
5.7808 | 0.17 | 175 | 5.4596 |
5.4964 | 0.18 | 180 | 5.4131 |
5.8934 | 0.18 | 185 | 5.3834 |
6.6113 | 0.19 | 190 | 5.3575 |
6.2676 | 0.2 | 195 | 5.3370 |
5.9186 | 0.2 | 200 | 5.3093 |
6.6886 | 0.2 | 205 | 5.2713 |
5.1807 | 0.21 | 210 | 5.2369 |
6.1971 | 0.21 | 215 | 5.2052 |
5.766 | 0.22 | 220 | 5.1839 |
5.9246 | 0.23 | 225 | 5.1648 |
6.4893 | 0.23 | 230 | 5.1442 |
5.3428 | 0.23 | 235 | 5.1130 |
5.7767 | 0.24 | 240 | 5.0839 |
5.9352 | 0.24 | 245 | 5.0620 |
5.6338 | 0.25 | 250 | 5.0522 |
5.8564 | 0.26 | 255 | 5.0327 |
5.7787 | 0.26 | 260 | 5.0045 |
5.6463 | 0.27 | 265 | 4.9912 |
4.9419 | 0.27 | 270 | 4.9718 |
6.0014 | 0.28 | 275 | 4.9586 |
4.8812 | 0.28 | 280 | 4.9486 |
5.6219 | 0.28 | 285 | 4.9317 |
5.4921 | 0.29 | 290 | 4.9131 |
5.4535 | 0.29 | 295 | 4.8967 |
5.1836 | 0.3 | 300 | 4.8764 |
4.3432 | 0.3 | 305 | 4.8662 |
4.8323 | 0.31 | 310 | 4.8564 |
4.7862 | 0.32 | 315 | 4.8482 |
5.3593 | 0.32 | 320 | 4.8367 |
5.2734 | 0.33 | 325 | 4.8283 |
6.5221 | 0.33 | 330 | 4.8119 |
5.5495 | 0.34 | 335 | 4.7992 |
5.2248 | 0.34 | 340 | 4.7875 |
6.1969 | 0.34 | 345 | 4.7771 |
4.9022 | 0.35 | 350 | 4.7666 |
5.0548 | 0.35 | 355 | 4.7528 |
4.1457 | 0.36 | 360 | 4.7516 |
5.4985 | 0.36 | 365 | 4.7376 |
4.7874 | 0.37 | 370 | 4.7305 |
5.2283 | 0.38 | 375 | 4.7214 |
4.4285 | 0.38 | 380 | 4.7117 |
5.5889 | 0.39 | 385 | 4.6993 |
5.0003 | 0.39 | 390 | 4.6923 |
6.2434 | 0.4 | 395 | 4.6796 |
5.4728 | 0.4 | 400 | 4.6681 |
4.4054 | 0.41 | 405 | 4.6598 |
4.6877 | 0.41 | 410 | 4.6559 |
4.8273 | 0.41 | 415 | 4.6557 |
4.8691 | 0.42 | 420 | 4.6500 |
5.991 | 0.42 | 425 | 4.6416 |
5.4251 | 0.43 | 430 | 4.6384 |
4.9538 | 0.43 | 435 | 4.6269 |
5.0589 | 0.44 | 440 | 4.6172 |
5.4516 | 0.45 | 445 | 4.6078 |
4.5009 | 0.45 | 450 | 4.6025 |
5.1187 | 0.46 | 455 | 4.5974 |
5.6275 | 0.46 | 460 | 4.5826 |
5.4156 | 0.47 | 465 | 4.5821 |
5.2567 | 0.47 | 470 | 4.5745 |
5.2155 | 0.47 | 475 | 4.5683 |
5.0582 | 0.48 | 480 | 4.5585 |
4.8753 | 0.48 | 485 | 4.5480 |
5.0787 | 0.49 | 490 | 4.5415 |
4.9567 | 0.49 | 495 | 4.5393 |
4.5857 | 0.5 | 500 | 4.5349 |
4.8612 | 0.51 | 505 | 4.5285 |
4.8277 | 0.51 | 510 | 4.5240 |
5.5906 | 0.52 | 515 | 4.5260 |
4.9499 | 0.52 | 520 | 4.5173 |
5.2952 | 0.53 | 525 | 4.5060 |
3.8274 | 0.53 | 530 | 4.4994 |
4.467 | 0.54 | 535 | 4.4962 |
5.0859 | 0.54 | 540 | 4.4934 |
4.3718 | 0.55 | 545 | 4.4885 |
4.4206 | 0.55 | 550 | 4.4825 |
4.5786 | 0.56 | 555 | 4.4792 |
4.9051 | 0.56 | 560 | 4.4704 |
5.2053 | 0.56 | 565 | 4.4670 |
4.4463 | 0.57 | 570 | 4.4657 |
5.7765 | 0.57 | 575 | 4.4616 |
4.8999 | 0.58 | 580 | 4.4641 |
4.6483 | 0.58 | 585 | 4.4553 |
5.4009 | 0.59 | 590 | 4.4444 |
5.1194 | 0.59 | 595 | 4.4451 |
4.7166 | 0.6 | 600 | 4.4393 |
4.8541 | 0.6 | 605 | 4.4360 |
4.7013 | 0.61 | 610 | 4.4320 |
5.4653 | 0.61 | 615 | 4.4303 |
5.0875 | 0.62 | 620 | 4.4255 |
5.1023 | 0.62 | 625 | 4.4223 |
4.6522 | 0.63 | 630 | 4.4194 |
4.8696 | 0.64 | 635 | 4.4139 |
5.2916 | 0.64 | 640 | 4.4094 |
4.8809 | 0.65 | 645 | 4.3972 |
5.0182 | 0.65 | 650 | 4.3930 |
4.9865 | 0.66 | 655 | 4.3878 |
4.8155 | 0.66 | 660 | 4.3860 |
5.5128 | 0.67 | 665 | 4.3792 |
5.076 | 0.67 | 670 | 4.3760 |
4.5312 | 0.68 | 675 | 4.3725 |
5.0691 | 0.68 | 680 | 4.3696 |
4.4553 | 0.69 | 685 | 4.3657 |
5.0 | 0.69 | 690 | 4.3588 |
4.3969 | 0.69 | 695 | 4.3574 |
4.7947 | 0.7 | 700 | 4.3534 |
5.2797 | 0.7 | 705 | 4.3471 |
4.3235 | 0.71 | 710 | 4.3432 |
4.8813 | 0.71 | 715 | 4.3424 |
4.4267 | 0.72 | 720 | 4.3413 |
4.987 | 0.72 | 725 | 4.3404 |
5.2805 | 0.73 | 730 | 4.3393 |
5.1594 | 0.73 | 735 | 4.3417 |
5.1164 | 0.74 | 740 | 4.3337 |
5.4437 | 0.74 | 745 | 4.3319 |
5.2844 | 0.75 | 750 | 4.3359 |
4.4978 | 0.76 | 755 | 4.3310 |
5.2737 | 0.76 | 760 | 4.3214 |
5.3885 | 0.77 | 765 | 4.3177 |
5.0851 | 0.77 | 770 | 4.3134 |
4.2761 | 0.78 | 775 | 4.3131 |
4.824 | 0.78 | 780 | 4.3051 |
4.5129 | 0.79 | 785 | 4.2968 |
4.7519 | 0.79 | 790 | 4.2943 |
4.4831 | 0.8 | 795 | 4.2971 |
4.6433 | 0.8 | 800 | 4.2932 |
4.4866 | 0.81 | 805 | 4.2881 |
4.589 | 0.81 | 810 | 4.2862 |
4.2021 | 0.81 | 815 | 4.2836 |
4.8308 | 0.82 | 820 | 4.2816 |
4.8649 | 0.82 | 825 | 4.2806 |
4.9864 | 0.83 | 830 | 4.2788 |
4.2605 | 0.83 | 835 | 4.2721 |
4.4628 | 0.84 | 840 | 4.2669 |
4.682 | 0.84 | 845 | 4.2690 |
4.3174 | 0.85 | 850 | 4.2702 |
4.3081 | 0.85 | 855 | 4.2675 |
5.0759 | 0.86 | 860 | 4.2642 |
4.6884 | 0.86 | 865 | 4.2619 |
5.1781 | 0.87 | 870 | 4.2591 |
4.3708 | 0.88 | 875 | 4.2581 |
4.5789 | 0.88 | 880 | 4.2546 |
5.038 | 0.89 | 885 | 4.2526 |
5.3472 | 0.89 | 890 | 4.2571 |
5.0421 | 0.9 | 895 | 4.2505 |
4.4187 | 0.9 | 900 | 4.2472 |
5.1907 | 0.91 | 905 | 4.2506 |
4.4268 | 0.91 | 910 | 4.2513 |
5.0916 | 0.92 | 915 | 4.2449 |
4.8503 | 0.92 | 920 | 4.2410 |
4.2652 | 0.93 | 925 | 4.2357 |
4.812 | 0.93 | 930 | 4.2317 |
5.084 | 0.94 | 935 | 4.2310 |
5.7428 | 0.94 | 940 | 4.2257 |
5.3298 | 0.94 | 945 | 4.2259 |
4.0464 | 0.95 | 950 | 4.2259 |
5.0414 | 0.95 | 955 | 4.2212 |
5.1559 | 0.96 | 960 | 4.2186 |
4.7129 | 0.96 | 965 | 4.2227 |
4.4059 | 0.97 | 970 | 4.2243 |
4.4548 | 0.97 | 975 | 4.2169 |
4.6622 | 0.98 | 980 | 4.2075 |
5.1651 | 0.98 | 985 | 4.2058 |
4.6515 | 0.99 | 990 | 4.2071 |
4.9588 | 0.99 | 995 | 4.2071 |
4.7649 | 1.0 | 1000 | 4.2091 |
4.7989 | 1.0 | 1005 | 4.2076 |
4.7028 | 1.01 | 1010 | 4.2019 |
5.0315 | 1.01 | 1015 | 4.1994 |
4.0678 | 1.02 | 1020 | 4.1973 |
4.1186 | 1.02 | 1025 | 4.1941 |
4.448 | 1.03 | 1030 | 4.1908 |
4.7813 | 1.03 | 1035 | 4.1892 |
5.0336 | 1.04 | 1040 | 4.1872 |
4.7727 | 1.04 | 1045 | 4.1857 |
4.5824 | 1.05 | 1050 | 4.1863 |
3.9989 | 1.05 | 1055 | 4.1859 |
4.5373 | 1.06 | 1060 | 4.1833 |
4.8955 | 1.06 | 1065 | 4.1789 |
4.8222 | 1.07 | 1070 | 4.1780 |
4.6521 | 1.07 | 1075 | 4.1790 |
4.1452 | 1.08 | 1080 | 4.1775 |
4.7654 | 1.08 | 1085 | 4.1757 |
4.1216 | 1.09 | 1090 | 4.1762 |
4.5188 | 1.09 | 1095 | 4.1720 |
4.8948 | 1.1 | 1100 | 4.1717 |
5.3199 | 1.1 | 1105 | 4.1719 |
4.7887 | 1.11 | 1110 | 4.1727 |
4.7932 | 1.11 | 1115 | 4.1692 |
4.1068 | 1.12 | 1120 | 4.1658 |
4.7401 | 1.12 | 1125 | 4.1670 |
4.6968 | 1.13 | 1130 | 4.1661 |
4.4696 | 1.14 | 1135 | 4.1646 |
4.2353 | 1.14 | 1140 | 4.1612 |
4.2536 | 1.15 | 1145 | 4.1586 |
4.3728 | 1.15 | 1150 | 4.1582 |
4.9408 | 1.16 | 1155 | 4.1550 |
đ License
This project is licensed under the MIT License.
Phi 2 GGUF
Other
Phi-2 is a small yet powerful language model developed by Microsoft, featuring 2.7 billion parameters, focusing on efficient inference and high-quality text generation.
Large Language Model Supports Multiple Languages
P
TheBloke
41.5M
205
Roberta Large
MIT
A large English language model pre-trained with masked language modeling objectives, using improved BERT training methods
Large Language Model English
R
FacebookAI
19.4M
212
Distilbert Base Uncased
Apache-2.0
DistilBERT is a distilled version of the BERT base model, maintaining similar performance while being more lightweight and efficient, suitable for natural language processing tasks such as sequence classification and token classification.
Large Language Model English
D
distilbert
11.1M
669
Llama 3.1 8B Instruct GGUF
Meta Llama 3.1 8B Instruct is a multilingual large language model optimized for multilingual dialogue use cases, excelling in common industry benchmarks.
Large Language Model English
L
modularai
9.7M
4
Xlm Roberta Base
MIT
XLM-RoBERTa is a multilingual model pretrained on 2.5TB of filtered CommonCrawl data across 100 languages, using masked language modeling as the training objective.
Large Language Model Supports Multiple Languages
X
FacebookAI
9.6M
664
Roberta Base
MIT
An English pre-trained model based on Transformer architecture, trained on massive text through masked language modeling objectives, supporting text feature extraction and downstream task fine-tuning
Large Language Model English
R
FacebookAI
9.3M
488
Opt 125m
Other
OPT is an open pre-trained Transformer language model suite released by Meta AI, with parameter sizes ranging from 125 million to 175 billion, designed to match the performance of the GPT-3 series while promoting open research in large-scale language models.
Large Language Model English
O
facebook
6.3M
198
1
A pretrained model based on the transformers library, suitable for various NLP tasks
Large Language Model
Transformers

1
unslothai
6.2M
1
Llama 3.1 8B Instruct
Llama 3.1 is Meta's multilingual large language model series, featuring 8B, 70B, and 405B parameter scales, supporting 8 languages and code generation, with optimized multilingual dialogue scenarios.
Large Language Model
Transformers Supports Multiple Languages

L
meta-llama
5.7M
3,898
T5 Base
Apache-2.0
The T5 Base Version is a text-to-text Transformer model developed by Google with 220 million parameters, supporting multilingual NLP tasks.
Large Language Model Supports Multiple Languages
T
google-t5
5.4M
702
Featured Recommended AI Models
Š 2025AIbase