đ VARGPT: Unified Understanding and Generation in a Visual Autoregressive Multimodal Large Language Model
VARGPT (7B+2B) models understanding and generation as two distinct paradigms within a unified model: predicting the next token for visual understanding and predicting the next scale for visual generation. This approach enables more efficient and accurate multimodal processing.
We offer a simple generation process for using our model. For more in - depth details, please refer to our Github repository: VARGPT-v1.
đĻ Dataset and Model Information
Property |
Details |
License |
Apache - 2.0 |
Datasets |
VARGPT-family/VARGPT_datasets |
Language |
English |
Metrics |
Accuracy, F1 |
Pipeline Tag |
Any - to - any |
Library Name |
transformers |
đ Quick Start
⨠Features
VARGPT models visual understanding and generation as two different paradigms in a single model, offering a unified approach for multimodal tasks.
đģ Usage Examples
đ Multimodal Understanding
Inference demo for Multimodal Understanding. You can execute the following code:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoTokenizer
from vargpt_llava.modeling_vargpt_llava import VARGPTLlavaForConditionalGeneration
from vargpt_llava.prepare_vargpt_llava import prepare_vargpt_llava
from vargpt_llava.processing_vargpt_llava import VARGPTLlavaProcessor
from patching_utils.patching import patching
model_id = "VARGPT_LLaVA-v1"
prepare_vargpt_llava(model_id)
model = VARGPTLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).to(0)
patching(model)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = VARGPTLlavaProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please explain the meme in detail."},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image_file = "./assets/llava_bench_demo.png"
print(prompt)
raw_image = Image.open(image_file)
inputs = processor(images=raw_image, text=prompt, return_tensors='pt').to(0, torch.float32)
output = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False)
print(processor.decode(output[0], skip_special_tokens=True))
đ¨ Multimodal Generation
Inference demo for Text - to - Image Generation. You can execute the following code:
import requests
from PIL import Image
import torch
from transformers import AutoProcessor, AutoTokenizer
from vargpt_llava.modeling_vargpt_llava import VARGPTLlavaForConditionalGeneration
from vargpt_llava.prepare_vargpt_llava import prepare_vargpt_llava
from vargpt_llava.processing_vargpt_llava import VARGPTLlavaProcessor
from patching_utils.patching import patching
model_id = "VARGPT_LLaVA-v1"
prepare_vargpt_llava(model_id)
model = VARGPTLlavaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float32,
low_cpu_mem_usage=True,
).to(0)
patching(model)
tokenizer = AutoTokenizer.from_pretrained(model_id)
processor = VARGPTLlavaProcessor.from_pretrained(model_id)
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "Please design a drawing of a butterfly on a flower."},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
print(prompt)
inputs = processor(text=prompt, return_tensors='pt').to(0, torch.float32)
model._IMAGE_GEN_PATH = "output.png"
output = model.generate(
**inputs,
max_new_tokens=2048,
do_sample=False)
print(processor.decode(output[0], skip_special_tokens=True))
đ License
This project is licensed under the Apache - 2.0 license.