๐ Wav2Vec2-Large-XLSR-53-Irish
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Irish using the Common Voice dataset, aiming to provide accurate automatic speech recognition for Irish.
โ ๏ธ Important Note
When using this model, make sure that your speech input is sampled at 16kHz.
๐ Quick Start
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Irish using the Common Voice dataset.
โจ Features
- Fine-tuned on the Irish language, suitable for Irish speech recognition tasks.
- Can be used directly without a language model.
๐ฆ Installation
No specific installation steps are provided in the original document, so this section is skipped.
๐ป Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ga-IE", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish")
model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Irish test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ga-IE", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish")
model = Wav2Vec2ForCTC.from_pretrained("cpierse/wav2vec2-large-xlsr-53-irish")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\โ\%\โ\โ\๏ฟฝ\โ\ยซ\(\ยป\)\โ\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
๐ Documentation
Model Information
Property |
Details |
Model Type |
Wav2Vec2-Large-XLSR-53-Irish |
Training Data |
Common Voice ga-IE |
Metrics |
WER (Word Error Rate) |
Test Result
Test Result: 43.06 %
๐ License
This model is licensed under the Apache-2.0 license.