đ Wav2Vec2-Large-XLSR-53-Frisian
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Frisian using the Common Voice dataset. It can be used for automatic speech recognition of Frisian.
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "fy-NL", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian")
model = Wav2Vec2ForCTC.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "fy-NL", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian")
model = Wav2Vec2ForCTC.from_pretrained("crang/wav2vec2-large-xlsr-53-frisian")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\u2013\u2014\;\:\"\\%\\\]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 19.11 %
đ Documentation
The model is fine - tuned on the Frisian language using the Common Voice dataset. The train
and validation
subsets of the Common Voice dataset were used for training.
đ§ Technical Details
No specific technical details (more than 50 words) are provided in the original document, so this section is skipped.
đ License
This model is licensed under the apache - 2.0
license.
đ Model Information
Property |
Details |
Model Type |
Fine - tuned Wav2Vec2 - Large - XLSR - 53 for Frisian |
Training Data |
Common Voice train and validation datasets |
Evaluation Metric |
Word Error Rate (WER) |
Test WER |
19.11% |