🚀 Wav2Vec2-Large-XLSR-53-Vietnamese
This model is fine - tuned for Vietnamese Speech Recognition, leveraging pre - trained weights and specific datasets.
🚀 Quick Start
This model is fine-tuned from dragonSwing/wav2vec2-base-pretrain-vietnamese on the Vietnamese Speech Recognition task. It uses 100h of labelled data from the VSLP dataset. When using this model, ensure that your speech input is sampled at 16kHz.
✨ Features
- Datasets: Utilizes datasets such as vlsp and common_voice.
- Metrics: Evaluated using the Word Error Rate (WER) metric.
- Tags: Related to audio, automatic - speech - recognition, and speech.
- License: Released under the Apache 2.0 license.
Property |
Details |
Model Type |
Wav2Vec2 - Large - XLSR - 53 - Vietnamese |
Training Data |
100h labelled data from VSLP dataset |
Datasets |
vlsp, common_voice |
Metrics |
wer |
Tags |
audio, automatic - speech - recognition, speech |
License |
Apache 2.0 |
💻 Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "vi", split="test")
processor = Wav2Vec2Processor.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("dragonSwing/wav2vec2-base-vietnamese")
model.to("cuda")
chars_to_ignore_regex = r'[,?.!\-;:"“%\'�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=1)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 31.353591%
📄 License
This project is licensed under the Apache 2.0 license.