đ wav2vec-tr-lite-AG
This is a model for automatic speech recognition in Turkish, leveraging the XLSR Wav2Vec2 architecture. It offers a practical solution for speech - to - text conversion tasks in the Turkish language.
đ Quick Start
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG")
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG")
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "tr", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("emre/wav2vec-tr-lite-AG")
model = Wav2Vec2ForCTC.from_pretrained("emre/wav2vec-tr-lite-AG")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
đ Documentation
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00005
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- distributed_type: multi - GPU
- num_devices: 2
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
0.4388 |
3.7 |
400 |
1.366 |
0.9701 |
0.3766 |
7.4 |
800 |
0.4914 |
0.5374 |
0.2295 |
11.11 |
1200 |
0.3934 |
0.4125 |
0.1121 |
14.81 |
1600 |
0.3264 |
0.2904 |
0.1473 |
18.51 |
2000 |
0.3103 |
0.2671 |
0.1013 |
22.22 |
2400 |
0.2589 |
0.2324 |
0.0704 |
25.92 |
2800 |
0.2826 |
0.2339 |
0.0537 |
29.63 |
3200 |
0.2704 |
0.2309 |
Framework versions
- Transformers 4.12.0.dev0
- Pytorch 1.8.1
- Datasets 1.14.1.dev0
- Tokenizers 0.10.3
đ License
This project is licensed under the Apache 2.0 license.
đ Model Information
Property |
Details |
Model Type |
XLSR Wav2Vec2 Turkish by Davut Emre TASAR |
Training Data |
Common Voice |
Metrics |
WER |
Tags |
Audio, Automatic Speech Recognition, Speech |
Task |
Speech Recognition (Automatic Speech Recognition) |
Dataset |
Common Voice tr |
Test Metric |
Test WER |