đ Wav2Vec2-Large-XLSR-53-Hakha-Chin
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Hakha Chin using the Common Voice dataset. It can be used for automatic speech recognition tasks.
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine-tuned on the Hakha Chin language using the Common Voice dataset.
- Can be used directly for speech recognition without a language model.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "cnh", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh/")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Portuguese test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "cnh", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-cnh")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\%\â\â\īŋŊ\/]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 31.38 %
đ Documentation
The Common Voice train
and validation
datasets were used for training. The script used for training can be found here.
đ§ Technical Details
No technical details are provided in the original document, so this section is skipped.
đ License
This model is licensed under the Apache-2.0 license.
đ Model Information
Property |
Details |
Model Type |
Wav2Vec2-Large-XLSR-53-Hakha-Chin |
Training Data |
Common Voice train and validation datasets |
Metrics |
WER (Word Error Rate) |
Task |
Automatic Speech Recognition |
Dataset |
Common Voice cnh |
Test WER |
31.38 |