๐ Wav2Vec2-Large-XLSR-53-Esperanto
This project fine-tunes the facebook/wav2vec2-large-xlsr-53 model on the Esperanto language using the Common Voice dataset, aiming to achieve high - quality automatic speech recognition for Esperanto.
๐ Quick Start
The model is fine - tuned from facebook/wav2vec2-large-xlsr-53 on Esperanto with the Common Voice dataset. When using this model, ensure that your speech input is sampled at 16kHz.
โจ Features
- Language Adaptation: Specifically fine - tuned for Esperanto, making it suitable for Esperanto speech recognition tasks.
- High - Quality Performance: Achieves a WER (Word Error Rate) of 10.13% on the Common Voice Esperanto test dataset.
๐ฆ Installation
No specific installation steps are provided in the original document.
๐ป Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "eo", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo')
model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo')
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
import jiwer
def chunked_wer(targets, predictions, chunk_size=None):
if chunk_size is None: return jiwer.wer(targets, predictions)
start = 0
end = chunk_size
H, S, D, I = 0, 0, 0, 0
while start < len(targets):
chunk_metrics = jiwer.compute_measures(targets[start:end], predictions[start:end])
H = H + chunk_metrics["hits"]
S = S + chunk_metrics["substitutions"]
D = D + chunk_metrics["deletions"]
I = I + chunk_metrics["insertions"]
start += chunk_size
end += chunk_size
return float(S + D + I) / float(H + S + D)
test_dataset = load_dataset("common_voice", "eo", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo')
model = Wav2Vec2ForCTC.from_pretrained('gchhablani/wav2vec2-large-xlsr-eo')
model.to("cuda")
chars_to_ignore_regex = """[\\\\\\\\,\\\\\\\\?\\\\\\\\.\\\\\\\\!\\\\\\\\-\\\\\\\\;\\\\\\\\:\\\\\\\\"\\\\\\\\โ\\\\\\\\%\\\\\\\\โ\\\\\\\\โ\\\\\\\\๏ฟฝ\\\\\\\\โ\\\\\\\\ยซ\\\\\\\\(\\\\\\\\ยป\\\\\\\\)\\\\\\\\โ\\\\\\\\']"""
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace('โ',' ').replace('โ',' ')
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * chunked_wer(predictions=result["pred_strings"], targets=result["sentence"],chunk_size=5000)))
๐ Documentation
Test Result
The test result shows a WER of 10.13%.
Training
The Common Voice train
and validation
datasets were used for training. The code can be found here.
๐ License
This project is licensed under the Apache - 2.0 license.
Additional Information
Property |
Details |
Model Type |
Wav2Vec2 Large 53 Esperanto by Gunjan Chhablani |
Training Data |
Common Voice train and validation datasets |
Metrics |
Word Error Rate (WER) |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |