đ Wav2Vec2-Large-XLSR-53-Hungarian
This model is fine - tuned from facebook/wav2vec2-large-xlsr-53 on Hungarian using the Common Voice dataset. It's designed for speech recognition tasks, offering a solution for Hungarian language processing.
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine - Tuned: Based on the large - scale pre - trained model facebook/wav2vec2-large-xlsr-53 and fine - tuned on the Hungarian language.
- Data Source: Trained on the Common Voice dataset, which provides a rich source of real - world speech data.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "hu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Portuguese test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "hu", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-hu")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\%\â\â\īŋŊ\â\âĻ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 46.75 %
đ Documentation
Training
The Common Voice train
and validation
datasets were used for training. The code can be found here. The notebook containing the code used for evaluation can be found here.
đ License
This model is licensed under the apache - 2.0
license.
Additional Information
Property |
Details |
Model Type |
Fine - tuned Wav2Vec2 Large 53 for Hungarian |
Training Data |
Common Voice (train and validation datasets) |
Metrics |
Word Error Rate (WER) |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
Model Name |
Wav2Vec2 Large 53 Hungarian by Gunjan Chhablani |
Task |
Speech Recognition |
Dataset for Results |
Common Voice hu |
Test WER |
46.75 |