๐ Wav2Vec2-Large-XLSR-53-Romansh-Sursilvan
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Romansh Sursilvan using the Common Voice dataset. It's designed for automatic speech recognition tasks.
๐ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
โจ Features
- Fine-tuned on Romansh Sursilvan with the Common Voice dataset.
- Suitable for automatic speech recognition tasks.
๐ป Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "rm-sursilv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The following code shows how to evaluate the model on the Portuguese test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "rm-sursilv", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv")
model = Wav2Vec2ForCTC.from_pretrained("gchhablani/wav2vec2-large-xlsr-rm-sursilv")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\โ\\%\\โ\\โ\\๏ฟฝ\\โฆ\\ยซ\\ยป\\โ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 25.16 %
๐ Documentation
Training
The Common Voice train
and validation
datasets were used for training. The code can be found here.
๐ License
This model is licensed under the apache-2.0 license.
๐ฆ Model Information
Property |
Details |
Model Type |
Wav2Vec2 Large 53 Romansh Sursilvan |
Training Data |
Common Voice rm-sursilv |
Metrics |
WER (Word Error Rate) |
Tags |
audio, automatic-speech-recognition, speech, xlsr-fine-tuning-week |
Model Index |
Name: Wav2Vec2 Large 53 Romansh Sursilvan by Gunjan Chhablani, Results: Speech Recognition on Common Voice rm-sursilv with Test WER of 25.16 |