๐ Wav2Vec2-Large-XLSR-53-Romanian
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 for Romanian, leveraging the Common Voice dataset. When using this model, ensure that your speech input is sampled at 16kHz.
๐ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 for the Romanian language, using the Common Voice dataset. Remember to sample your speech input at 16kHz when using this model.
โจ Features
- Audio Processing: Specialized for automatic speech recognition in Romanian.
- Fine - Tuned: Based on the large - scale XLSR Wav2Vec2 model, fine - tuned for better performance in Romanian speech recognition.
๐ฆ Installation
No specific installation steps are provided in the original document.
๐ป Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ro", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ro", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
model = Wav2Vec2ForCTC.from_pretrained("gmihaila/wav2vec2-large-xlsr-53-romanian")
model.to("cuda")
chars_to_ignore_regex = '[\\\\,\\\\?\\\\.\\\\!\\\\-\\\\;\\\\:\\\\\"\\\\รขโฌล]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
๐ Documentation
Evaluation
The model can be evaluated on the Romanian test data of Common Voice. The Word Error Rate (WER) on the test set is 28.43%.
Training
The Common Voice train
and validation
datasets were used for training. The training script can be found here.
๐ License
This project is licensed under the Apache - 2.0 license.
๐ฆ Model Information
Property |
Details |
Model Type |
Fine - tuned XLSR Wav2Vec2 for Romanian |
Training Data |
Common Voice (train and validation datasets) |
Base Model |
facebook/wav2vec2-large-xlsr-53 |
Test WER |
28.43% |