🚀 XLS-R-300M - Breton
This model is a fine - tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA - FOUNDATION/COMMON_VOICE_8_0 - BR dataset. It is designed for automatic speech recognition tasks and has achieved certain results in relevant evaluations.
📚 Documentation
Model Information
Property |
Details |
Model Type |
Automatic Speech Recognition |
Training Data |
mozilla - foundation/common_voice_8_0 |
Model Name |
XLS - R - 300M - Breton |
Evaluation Results
This model achieves the following results on the evaluation set:
In the model index, for the Automatic Speech Recognition task on the Common Voice 8 dataset (type: mozilla - foundation/common_voice_8_0, args: br), the metrics are as follows:
- Test WER: 54.855
- Test CER: 17.865
Framework Versions
- Transformers 4.16.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.17.1.dev0
- Tokenizers 0.10.3
💻 Usage Examples
Evaluation Commands
Evaluate on mozilla - foundation/common_voice_8_0
with split test
python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset mozilla-foundation/common_voice_8_0 --config br --split test
Evaluate on speech - recognition - community - v2/dev_data
python eval.py --model_id infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8 --dataset speech-recognition-community-v2/dev_data --config br --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "infinitejoy/wav2vec2-large-xls-r-300m-breton-cv8"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "br", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Eval results on Common Voice 7 "test" (WER):
NA
📄 License
This model is released under the Apache - 2.0 license.