đ Wav2Vec2-Large-XLSR-Latvian
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on the Latvian Common Voice dataset, designed for automatic speech recognition in Latvian.
Key Information
Property |
Details |
Model Type |
Fine - tuned Wav2Vec2 - Large - XLSR for Latvian |
Training Data |
Latvian Common Voice dataset |
Base Model |
facebook/wav2vec2-large-xlsr-53 |
Metrics |
Word Error Rate (WER) |
Test WER |
29.95% |
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine - tuned on the Latvian Common Voice dataset for better performance in Latvian speech recognition.
- Can be used directly without a language model.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "lv", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "lv", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
model = Wav2Vec2ForCTC.from_pretrained("jimregan/wav2vec2-large-xlsr-latvian-cv")
model.to("cuda")
chars_to_ignore_regex = '[,\?\.\!\;\:\"\â\%\â\â\(\)\*\âĻ\â\â\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
đ Documentation
The model can be evaluated on the Latvian test data of Common Voice as shown in the advanced usage example. The test result shows a Word Error Rate (WER) of 29.95%.
đ§ Technical Details
No specific technical details are provided in the original document, so this section is skipped.
đ License
This project is licensed under the Apache - 2.0 license.