🚀 Fine-tuned XLSR-53 large model for speech recognition in French
This fine-tuned model is based on facebook/wav2vec2-large-xlsr-53 and trained on French data from Common Voice 6.1. It's designed for accurate French speech recognition.
🚀 Quick Start
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on French, using the train and validation splits of Common Voice 6.1. When using this model, ensure that your speech input is sampled at 16kHz.
This model has been fine-tuned thanks to the GPU credits generously given by the OVHcloud :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
✨ Features
- Audio Processing: Specialized for French speech recognition.
- Fine-tuned Model: Based on a pre - trained large model and fine - tuned on French data.
- Multiple Metrics: Evaluated using WER (Word Error Rate) and CER (Character Error Rate).
📦 Installation
No specific installation steps are provided in the original document.
💻 Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-french")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "fr"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-french"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
Usage Results
Reference |
Prediction |
"CE DERNIER A ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE." |
CE DERNIER ÉVOLUÉ TOUT AU LONG DE L'HISTOIRE ROMAINE |
CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ACHÉMÉNIDE ET SEPT DES SASSANIDES. |
CE SITE CONTIENT QUATRE TOMBEAUX DE LA DYNASTIE ASHEMÉNID ET SEPT DES SASANDNIDES |
"J'AI DIT QUE LES ACTEURS DE BOIS AVAIENT, SELON MOI, BEAUCOUP D'AVANTAGES SUR LES AUTRES." |
JAI DIT QUE LES ACTEURS DE BOIS AVAIENT SELON MOI BEAUCOUP DAVANTAGES SUR LES AUTRES |
LES PAYS-BAS ONT REMPORTÉ TOUTES LES ÉDITIONS. |
LE PAYS-BAS ON REMPORTÉ TOUTES LES ÉDITIONS |
IL Y A MAINTENANT UNE GARE ROUTIÈRE. |
IL AMNARDIGAD LE TIRAN |
HUIT |
HUIT |
DANS L’ATTENTE DU LENDEMAIN, ILS NE POUVAIENT SE DÉFENDRE D’UNE VIVE ÉMOTION |
DANS L'ATTENTE DU LENDEMAIN IL NE POUVAIT SE DÉFENDRE DUNE VIVE ÉMOTION |
LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES. |
LA PREMIÈRE SAISON EST COMPOSÉE DE DOUZE ÉPISODES |
ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES. |
ELLE SE TROUVE ÉGALEMENT DANS LES ÎLES BRITANNIQUES |
ZÉRO |
ZEGO |
📚 Documentation
Evaluation
- To evaluate on
mozilla-foundation/common_voice_6_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset mozilla-foundation/common_voice_6_0 --config fr --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-french --dataset speech-recognition-community-v2/dev_data --config fr --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Model Index
- Name: XLSR Wav2Vec2 French by Jonatas Grosman
- Results:
- Task: Automatic Speech Recognition
- Datasets:
- Common Voice fr:
- Metrics:
- Test WER: 17.65
- Test CER: 4.89
- Test WER (+LM): 13.59
- Test CER (+LM): 3.91
- Robust Speech Event - Dev Data:
- Metrics:
- Dev WER: 34.35
- Dev CER: 14.09
- Dev WER (+LM): 24.72
- Dev CER (+LM): 12.33
Other Information
Property |
Details |
Model Type |
Fine - tuned XLSR-53 large model for French speech recognition |
Training Data |
Common Voice 6.1 (train and validation splits) |
Metrics |
WER, CER |
Tags |
audio, automatic - speech - recognition, fr, hf - asr - leaderboard, mozilla - foundation/common_voice_6_0, robust - speech - event, speech, xlsr - fine - tuning - week |
📄 License
This project is licensed under the Apache-2.0 license.
📖 Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-french,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {F}rench},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-french}},
year={2021}
}