🚀 XLSR Wav2Vec2 Italian by Jonatas Grosman
This is a fine - tuned XLSR - 53 large model for Italian speech recognition, offering high - quality automatic speech recognition capabilities.
🚀 Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on Italian, using the train and validation splits of Common Voice 6.1. When using this model, ensure that your speech input is sampled at 16kHz.
This model was fine - tuned thanks to the GPU credits generously provided by OVHcloud :)
The training script can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
✨ Features
- Multilingual Adaptability: Based on the XLSR - 53 large model, it can be well - adapted to Italian speech recognition.
- High - Quality Results: Achieves low WER and CER on the test set, with additional improvements when using a language model.
📦 Installation
No specific installation steps are provided in the original document.
💻 Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-italian")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "it"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-italian"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
Here is a comparison table of reference and prediction results:
Reference |
Prediction |
POI LEI MORÌ. |
POI LEI MORÌ |
IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI. |
IL LIBRO HA SUSCITATO MOLTE POLEMICHE A CAUSA DEI SUOI CONTENUTI |
"FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE." |
FIN DALL'INIZIO LA SEDE EPISCOPALE È STATA IMMEDIATAMENTE SOGGETTA ALLA SANTA SEDE |
IL VUOTO ASSOLUTO? |
IL VUOTO ASSOLUTO |
DOPO ALCUNI ANNI, EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI. |
DOPO ALCUNI ANNI EGLI DECISE DI TORNARE IN INDIA PER RACCOGLIERE ALTRI INSEGNAMENTI |
SALVATION SUE |
SALVATION SOO |
IN QUESTO MODO, DECIO OTTENNE IL POTERE IMPERIALE. |
IN QUESTO MODO DECHO OTTENNE IL POTERE IMPERIALE |
SPARTA NOVARA ACQUISISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA. |
PARCANOVARACFILISCE IL TITOLO SPORTIVO PER GIOCARE IN PRIMA CATEGORIA |
IN SEGUITO, KYGO E SHEAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE. |
IN SEGUITO KIGO E SHIAR HANNO PROPOSTO DI CONTINUARE A LAVORARE SULLA CANZONE |
ALAN CLARKE |
ALAN CLARK |
📚 Documentation
Evaluation
- To evaluate on
mozilla-foundation/common_voice_6_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset mozilla-foundation/common_voice_6_0 --config it --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-italian --dataset speech-recognition-community-v2/dev_data --config it --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Model Information
Property |
Details |
Model Type |
Fine - tuned XLSR - 53 large model for Italian speech recognition |
Training Data |
Common Voice 6.1 (train and validation splits for Italian) |
Metrics |
WER, CER |
Tags |
audio, automatic - speech - recognition, hf - asr - leaderboard, it, mozilla - foundation/common_voice_6_0, robust - speech - event, speech, xlsr - fine - tuning - week |
📄 License
This model is licensed under the Apache 2.0 license.
📚 Citation
If you want to cite this model, you can use the following BibTeX entry:
@misc{grosman2021xlsr53-large-italian,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {I}talian},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-italian}},
year={2021}
}