🚀 Fine-tuned XLSR-53 large model for speech recognition in Spanish
This is a fine - tuned model based on facebook/wav2vec2-large-xlsr-53 for Spanish speech recognition, which uses the train and validation splits of Common Voice 6.1.
🚀 Quick Start
This model is fine - tuned on Spanish using the train and validation splits of Common Voice 6.1. When using this model, ensure that your speech input is sampled at 16kHz.
This model has been fine - tuned thanks to the GPU credits generously given by the OVHcloud :)
The script used for training can be found here: https://github.com/jonatasgrosman/wav2vec2-sprint
✨ Features
- Datasets: Utilizes
common_voice
and mozilla - foundation/common_voice_6_0
for training.
- Metrics: Evaluated using
wer
(Word Error Rate) and cer
(Character Error Rate).
- Tags: Associated with tags like
audio
, automatic - speech - recognition
, etc.
📦 Installation
No specific installation steps are provided in the original document, so this section is skipped.
💻 Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-large-xlsr-53-spanish")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "es"
MODEL_ID = "jonatasgrosman/wav2vec2-large-xlsr-53-spanish"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
for i, predicted_sentence in enumerate(predicted_sentences):
print("-" * 100)
print("Reference:", test_dataset[i]["sentence"])
print("Prediction:", predicted_sentence)
Reference |
Prediction |
HABITA EN AGUAS POCO PROFUNDAS Y ROCOSAS. |
HABITAN AGUAS POCO PROFUNDAS Y ROCOSAS |
OPERA PRINCIPALMENTE VUELOS DE CABOTAJE Y REGIONALES DE CARGA. |
OPERA PRINCIPALMENTE VUELO DE CARBOTAJES Y REGIONALES DE CARGAN |
PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN. |
PARA VISITAR CONTACTAR PRIMERO CON LA DIRECCIÓN |
TRES |
TRES |
REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA, PARA CONTINUAR LUEGO EN ESPAÑA. |
REALIZÓ LOS ESTUDIOS PRIMARIOS EN FRANCIA PARA CONTINUAR LUEGO EN ESPAÑA |
EN LOS AÑOS QUE SIGUIERON, ESTE TRABAJO ESPARTA PRODUJO DOCENAS DE BUENOS JUGADORES. |
EN LOS AÑOS QUE SIGUIERON ESTE TRABAJO ESPARTA PRODUJO DOCENA DE BUENOS JUGADORES |
SE ESTÁ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS. |
SE ESTÓ TRATANDO DE RECUPERAR SU CULTIVO EN LAS ISLAS CANARIAS |
SÍ |
SÍ |
"FUE ""SACADA"" DE LA SERIE EN EL EPISODIO ""LEAD"", EN QUE ALEXANDRA CABOT REGRESÓ." |
FUE SACADA DE LA SERIE EN EL EPISODIO LEED EN QUE ALEXANDRA KAOT REGRESÓ |
SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOKA, EN LA PROVINCIA DE BIOKO SUR. |
SE UBICAN ESPECÍFICAMENTE EN EL VALLE DE MOCA EN LA PROVINCIA DE PÍOCOSUR |
📚 Documentation
Evaluation
- To evaluate on
mozilla - foundation/common_voice_6_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset mozilla-foundation/common_voice_6_0 --config es --split test
- To evaluate on
speech - recognition - community - v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-large-xlsr-53-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0
📄 License
This model is licensed under the Apache 2.0 license.
🔧 Technical Details
No specific technical details are provided in the original document, so this section is skipped.
📄 Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr53-large-spanish,
title={Fine-tuned {XLSR}-53 large model for speech recognition in {S}panish},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-spanish}},
year={2021}
}