đ Fine-tuned XLS-R 1B model for speech recognition in English
This is a fine-tuned model based on facebook/wav2vec2-xls-r-1b for English speech recognition, leveraging multiple datasets. It offers high - performance speech recognition capabilities.
⨠Features
- Multilingual Datasets Utilization: Fine - tuned on Common Voice 8.0, Multilingual LibriSpeech, TED - LIUMv3, and Voxpopuli for better generalization.
- Multiple Metrics Evaluation: Evaluated on multiple datasets with metrics like WER (Word Error Rate) and CER (Character Error Rate), both with and without a language model.
Property |
Details |
Model Type |
Fine - tuned XLS - R 1B for English speech recognition |
Training Data |
mozilla - foundation/common_voice_8_0, Multilingual LibriSpeech, TED - LIUMv3, Voxpopuli |
Model Performance
Task |
Dataset |
WER |
CER |
WER (+LM) |
CER (+LM) |
Automatic Speech Recognition |
Common Voice 8 (Test) |
21.05 |
8.44 |
17.31 |
7.77 |
Automatic Speech Recognition |
Robust Speech Event - Dev Data |
20.53 |
9.31 |
17.7 |
8.93 |
Automatic Speech Recognition |
Robust Speech Event - Test Data |
17.88 |
- |
- |
- |
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz. This model has been fine - tuned by the HuggingSound tool, and thanks to the GPU credits generously given by the OVHcloud.
đģ Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-english")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "en"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-english"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
đ Documentation
Evaluation Commands
- To evaluate on
mozilla - foundation/common_voice_8_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-english --dataset mozilla-foundation/common_voice_8_0 --config en --split test
- To evaluate on
speech - recognition - community - v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-english --dataset speech-recognition-community-v2/dev_data --config en --split validation --chunk_length_s 5.0 --stride_length_s 1.0
đ License
This project is licensed under the Apache - 2.0 license.
đ Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr-1b-english,
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {E}nglish},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-english}},
year={2022}
}