đ Fine-tuned XLS-R 1B model for speech recognition in German
This is a fine - tuned model based on facebook/wav2vec2-xls-r-1b for German speech recognition, which uses multiple datasets for training. It can accurately transcribe German speech when the input is sampled at 16kHz.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-xls-r-1b on German. It uses the train and validation splits of Common Voice 8.0, Multilingual TEDx, Multilingual LibriSpeech, and Voxpopuli. When using this model, ensure that your speech input is sampled at 16kHz.
This model has been fine - tuned by the HuggingSound tool, and thanks to the GPU credits generously given by the OVHcloud.
⨠Features
- Language Support: Specialized for German speech recognition.
- Data Sources: Trained on multiple high - quality datasets, including Common Voice 8.0, Multilingual TEDx, Multilingual LibriSpeech, and Voxpopuli.
- Fine - tuning Tool: Fine - tuned using the HuggingSound tool.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-german")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "de"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-german"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
đ Documentation
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-german --dataset mozilla-foundation/common_voice_8_0 --config de --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-german --dataset speech-recognition-community-v2/dev_data --config de --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Model Information
Results
Task |
Dataset |
Metrics |
Value |
Automatic Speech Recognition |
Common Voice 8 |
Test WER |
10.95 |
Automatic Speech Recognition |
Common Voice 8 |
Test CER |
2.72 |
Automatic Speech Recognition |
Common Voice 8 |
Test WER (+LM) |
8.13 |
Automatic Speech Recognition |
Common Voice 8 |
Test CER (+LM) |
2.18 |
Automatic Speech Recognition |
Robust Speech Event - Dev Data |
Dev WER |
22.68 |
Automatic Speech Recognition |
Robust Speech Event - Dev Data |
Dev CER |
9.17 |
Automatic Speech Recognition |
Robust Speech Event - Dev Data |
Dev WER (+LM) |
17.07 |
Automatic Speech Recognition |
Robust Speech Event - Dev Data |
Dev CER (+LM) |
8.45 |
Automatic Speech Recognition |
Robust Speech Event - Test Data |
Test WER |
19.67 |
đ License
This model is licensed under the Apache - 2.0 license.
đ Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr-1b-german,
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {G}erman},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-german}},
year={2022}
}