đ Fine-tuned XLS-R 1B model for speech recognition in Spanish
This is a fine-tuned model for Spanish speech recognition. It is based on facebook/wav2vec2-xls-r-1b and fine-tuned using the train and validation splits of multiple datasets, including Common Voice 8.0, MediaSpeech, Multilingual TEDx, Multilingual LibriSpeech, and Voxpopuli. When using this model, ensure that your speech input is sampled at 16kHz.
⨠Features
- Language Support: Specifically fine-tuned for Spanish speech recognition.
- Multiple Datasets: Trained on a variety of datasets for better generalization.
- Performance Metrics: Achieved good results on multiple evaluation datasets, including low WER (Word Error Rate) and CER (Character Error Rate).
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
Using the HuggingSound library:
from huggingsound import SpeechRecognitionModel
model = SpeechRecognitionModel("jonatasgrosman/wav2vec2-xls-r-1b-spanish")
audio_paths = ["/path/to/file.mp3", "/path/to/another_file.wav"]
transcriptions = model.transcribe(audio_paths)
Advanced Usage
Writing your own inference script:
import torch
import librosa
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
LANG_ID = "es"
MODEL_ID = "jonatasgrosman/wav2vec2-xls-r-1b-spanish"
SAMPLES = 10
test_dataset = load_dataset("common_voice", LANG_ID, split=f"test[:{SAMPLES}]")
processor = Wav2Vec2Processor.from_pretrained(MODEL_ID)
model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = librosa.load(batch["path"], sr=16_000)
batch["speech"] = speech_array
batch["sentence"] = batch["sentence"].upper()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
predicted_sentences = processor.batch_decode(predicted_ids)
đ Documentation
Evaluation Commands
- To evaluate on
mozilla-foundation/common_voice_8_0
with split test
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-spanish --dataset mozilla-foundation/common_voice_8_0 --config es --split test
- To evaluate on
speech-recognition-community-v2/dev_data
python eval.py --model_id jonatasgrosman/wav2vec2-xls-r-1b-spanish --dataset speech-recognition-community-v2/dev_data --config es --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Model Information
Property |
Details |
Model Type |
Fine-tuned XLS-R 1B model for Spanish speech recognition |
Training Data |
Common Voice 8.0, MediaSpeech, Multilingual TEDx, Multilingual LibriSpeech, Voxpopuli |
Evaluation Results |
|
- |
Common Voice 8 (Test Data): Test WER = 9.97, Test CER = 2.85, Test WER (+LM) = 6.74, Test CER (+LM) = 2.24 |
- |
Robust Speech Event - Dev Data: Dev WER = 24.79, Dev CER = 9.7, Dev WER (+LM) = 16.37, Dev CER (+LM) = 8.84 |
- |
Robust Speech Event - Test Data: Test WER = 16.67 |
đ License
This model is licensed under the Apache-2.0 license.
đ Citation
If you want to cite this model you can use this:
@misc{grosman2021xlsr-1b-spanish,
title={Fine-tuned {XLS-R} 1{B} model for speech recognition in {S}panish},
author={Grosman, Jonatas},
howpublished={\url{https://huggingface.co/jonatasgrosman/wav2vec2-xls-r-1b-spanish}},
year={2022}
}