🚀 Wav2Vec2-Large-XLSR-53-Portuguese
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on Portuguese, utilizing the Common Voice dataset, which provides significant value for automatic speech recognition tasks in Portuguese.
Metadata
Property |
Details |
Language |
Portuguese (pt) |
Datasets |
Common Voice |
Metrics |
Word Error Rate (WER) |
Tags |
audio, speech, wav2vec2, pt, apache - 2.0, portuguese - speech - corpus, automatic - speech - recognition, speech, xlsr - fine - tuning - week, PyTorch |
License |
Apache 2.0 |
Model Name |
JoaoAlvarenga XLSR Wav2Vec2 Large 53 Portuguese A |
Task |
Speech Recognition (automatic - speech - recognition) |
Dataset Used |
Common Voice pt |
Test WER |
15.037146% |
🚀 Quick Start
This fine - tuned model facebook/wav2vec2-large-xlsr-53 on Portuguese can be used directly without a language model.
💻 Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "pt", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
📚 Documentation
Evaluation
The model can be evaluated on the Portuguese test data of Common Voice as follows:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "pt", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model = Wav2Vec2ForCTC.from_pretrained("joorock12/wav2vec2-large-xlsr-portuguese-a")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\'\�]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result (wer): 15.037146%
Training
The Common Voice train
and validation
datasets were used for training. The script used for training can be found at: https://github.com/joaoalvarenga/wav2vec2-large-xlsr-53-portuguese/blob/main/fine-tuning.py
📄 License
This project is licensed under the Apache 2.0 license.