🚀 wav2vec2-large-xls-r-1b-Swedish
This model is a fine - tuned version of facebook/wav2vec2-xls-r-1b on the common_voice dataset. It's designed for automatic speech recognition, achieving excellent results on Swedish speech recognition tasks.
📚 Documentation
Model Information
Property |
Details |
Model Type |
wav2vec2-large-xls-r-1b-Swedish |
Base Model |
facebook/wav2vec2-xls-r-1b |
Datasets |
mozilla - foundation/common_voice_8_0 |
Metrics |
wer, cer |
License |
apache - 2.0 |
Tags |
automatic - speech - recognition, robust - speech - event, hf - asr - leaderboard |
Evaluation Results
This model achieves the following results on the evaluation set:
Without LM
- Loss: 0.3370
- Wer: 18.44
- Cer: 5.75
With LM
- Loss: 0.3370
- Wer: 14.04
- Cer: 4.86
Evaluation Commands
- To evaluate on
mozilla - foundation/common_voice_8_0
with split test
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test
- To evaluate on
speech - recognition - community - v2/dev_data
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
Inference With LM
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7.5e - 05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon = 1e - 08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
3.1562 |
11.11 |
500 |
0.4830 |
0.3729 |
0.1169 |
0.5655 |
22.22 |
1000 |
0.3553 |
0.2381 |
0.0743 |
0.3376 |
33.33 |
1500 |
0.3359 |
0.2179 |
0.0696 |
0.2419 |
44.44 |
2000 |
0.3232 |
0.1844 |
0.0575 |
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0
Model Index
- Name: wav2vec2-large-xls-r-1b-Swedish
Results:
- Task:
Type: automatic - speech - recognition
Name: Speech Recognition
Dataset:
Name: Common Voice sv - SE
Type: mozilla - foundation/common_voice_8_0
Args: sv - SE
Metrics:
- Type: wer
Value: 14.04
Name: Test WER With LM
- Type: cer
Value: 4.86
Name: Test CER With LM
- Task:
Type: automatic - speech - recognition
Name: Automatic Speech Recognition
Dataset:
Name: Robust Speech Event - Dev Data
Type: speech - recognition - community - v2/dev_data
Args: sv
Metrics:
- Type: wer
Value: 29.69
Name: Test WER
- Type: cer
Value: 12.59
Name: Test CER