đ Wav2Vec2-Large-XLSR-53-Arabic
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Arabic using the Common Voice. It's designed for automatic speech recognition in Arabic.
đ Model Information
Property |
Details |
Model Type |
Wav2Vec2-Large-XLSR-53 fine-tuned for Arabic |
Training Data |
Common Voice train and validation datasets for Arabic |
Metrics |
Word Error Rate (WER) |
Tags |
audio, automatic-speech-recognition, speech, xlsr-fine-tuning-week |
License |
apache-2.0 |
đ Model Index
- Name: XLSR Wav2Vec2 Arabic by Othmane Rifki
- Results:
- Task:
- Name: Speech Recognition
- Type: automatic-speech-recognition
- Dataset:
- Name: Common Voice ar
- Type: common_voice
- Args: ar
- Metrics:
- Name: Test WER
- Type: wer
- Value: 46.77
đ Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine-tuned on Arabic data from Common Voice.
- Can be used for automatic speech recognition in Arabic without a language model.
đģ Usage Examples
Basic Usage
import librosa
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic")
resamplers = {
48000: torchaudio.transforms.Resample(48000, 16000),
44100: torchaudio.transforms.Resample(44100, 16000),
32000: torchaudio.transforms.Resample(32000, 16000),
}
def prepare_example(example):
speech, sampling_rate = torchaudio.load(example["path"])
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
return example
test_dataset = test_dataset.map(prepare_example)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
đ Documentation
Evaluation
The model can be evaluated as follows on the Arabic test data of Common Voice.
import librosa
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ar", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic")
model = Wav2Vec2ForCTC.from_pretrained("kmfoda/wav2vec2-large-xlsr-arabic")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\Ø\_\Ø\Ų\â]'
resamplers = {
48000: torchaudio.transforms.Resample(48000, 16000),
44100: torchaudio.transforms.Resample(44100, 16000),
32000: torchaudio.transforms.Resample(32000, 16000),
}
def prepare_example(example):
speech, sampling_rate = torchaudio.load(example["path"])
example["speech"] = resamplers[sampling_rate](speech).squeeze().numpy()
return example
test_dataset = test_dataset.map(prepare_example)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 52.53
Training
The Common Voice train
, validation
datasets were used for training.
The script used for training can be found here
đ License
This model is released under the apache-2.0 license.