Bp Commonvoice10 Xlsr
B
Bp Commonvoice10 Xlsr
Developed by lgris
Wav2vec 2.0 model fine-tuned for Brazilian Portuguese speech recognition based on Common Voice 7.0 dataset
Downloads 25
Release Time : 3/2/2022
Model Overview
This is an automatic speech recognition (ASR) model based on the Wav2Vec 2.0 architecture, specifically fine-tuned for Brazilian Portuguese. The model has been tested on multiple Portuguese datasets, demonstrating excellent speech recognition capabilities.
Model Features
Multi-dataset Testing
The model has been comprehensively tested on multiple Portuguese datasets including CETUC, Common Voice, and LaPS BM
Language Model Support
Supports integration with a 4-gram language model to significantly improve recognition accuracy
Efficient Fine-tuning
Targeted fine-tuning based on the Common Voice 7.0 dataset, optimized for Brazilian Portuguese recognition
Model Capabilities
Portuguese speech recognition
Supports multiple audio format processing
Can be combined with a language model to improve accuracy
Use Cases
Speech-to-Text
Portuguese Speech Transcription
Convert Portuguese speech content into text
Achieves a word error rate as low as 6.06% on the CETUC dataset
Voice Assistant
Speech recognition component for Portuguese voice assistant applications
Education
Language Learning Assistance
Helps learners practice Portuguese pronunciation and listening
đ commonvoice10-xlsr: Wav2vec 2.0 with Common Voice Dataset
This project demonstrates a fine - tuned Wav2vec model for Brazilian Portuguese using the Common Voice 7.0 dataset. It also tests the model against other available Brazilian Portuguese datasets.
⨠Features
- Datasets: Utilizes multiple datasets including Common Voice, MLS, CETUC, LaPS BM, VoxForge, TEDx, and SID.
- Metrics: Evaluates the model using the Word Error Rate (WER).
- Tags: Covers audio, speech, wav2vec2, and related areas.
- License: Licensed under the Apache 2.0 license.
đĻ Installation
Imports and dependencies
%%capture
!pip install torch==1.8.2+cu111 torchvision==0.9.2+cu111 torchaudio===0.8.2 -f https://download.pytorch.org/whl/lts/1.8/torch_lts.html
!pip install datasets
!pip install jiwer
!pip install transformers
!pip install soundfile
!pip install pyctcdecode
!pip install https://github.com/kpu/kenlm/archive/master.zip
import jiwer
import torchaudio
from datasets import load_dataset, load_metric
from transformers import (
Wav2Vec2ForCTC,
Wav2Vec2Processor,
)
from pyctcdecode import build_ctcdecoder
import torch
import re
import sys
Download datasets
%%capture
!gdown --id 1HFECzIizf-bmkQRLiQD0QVqcGtOG5upI
!mkdir bp_dataset
!unzip bp_dataset -d bp_dataset/
đģ Usage Examples
Basic Usage
MODEL_NAME = "lgris/commonvoice10-xlsr"
Advanced Usage
# Helpers
chars_to_ignore_regex = '[\,\?\.\!\;\:\"]' # noqa: W605
def map_to_array(batch):
speech, _ = torchaudio.load(batch["path"])
batch["speech"] = speech.squeeze(0).numpy()
batch["sampling_rate"] = 16_000
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower().replace("â", "'")
batch["target"] = batch["sentence"]
return batch
def calc_metrics(truths, hypos):
wers = []
mers = []
wils = []
for t, h in zip(truths, hypos):
try:
wers.append(jiwer.wer(t, h))
mers.append(jiwer.mer(t, h))
wils.append(jiwer.wil(t, h))
except: # Empty string?
pass
wer = sum(wers)/len(wers)
mer = sum(mers)/len(mers)
wil = sum(wils)/len(wils)
return wer, mer, wil
def load_data(dataset):
data_files = {'test': f'{dataset}/test.csv'}
dataset = load_dataset('csv', data_files=data_files)["test"]
return dataset.map(map_to_array)
# Model
class STT:
def __init__(self,
model_name,
device='cuda' if torch.cuda.is_available() else 'cpu',
lm=None):
self.model_name = model_name
self.model = Wav2Vec2ForCTC.from_pretrained(model_name).to(device)
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.vocab_dict = self.processor.tokenizer.get_vocab()
self.sorted_dict = {
k.lower(): v for k, v in sorted(self.vocab_dict.items(),
key=lambda item: item[1])
}
self.device = device
self.lm = lm
if self.lm:
self.lm_decoder = build_ctcdecoder(
list(self.sorted_dict.keys()),
self.lm
)
def batch_predict(self, batch):
features = self.processor(batch["speech"],
sampling_rate=batch["sampling_rate"][0],
padding=True,
return_tensors="pt")
input_values = features.input_values.to(self.device)
attention_mask = features.attention_mask.to(self.device)
with torch.no_grad():
logits = self.model(input_values, attention_mask=attention_mask).logits
if self.lm:
logits = logits.cpu().numpy()
batch["predicted"] = []
for sample_logits in logits:
batch["predicted"].append(self.lm_decoder.decode(sample_logits))
else:
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = self.processor.batch_decode(pred_ids)
return batch
# Tests
stt = STT(MODEL_NAME)
# CETUC
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
# Common Voice
ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
# LaPS
ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
# MLS
ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
# SID
ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
# TEDx
ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
# VoxForge
ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
# Tests with LM
# !find -type f -name "*.wav" -delete
!rm -rf ~/.cache
!gdown --id 1GJIKseP5ZkTbllQVgOL98R4yYAcIySFP # trained with wikipedia
stt = STT(MODEL_NAME, lm='pt-BR-wiki.word.4-gram.arpa')
# !gdown --id 1dLFldy7eguPtyJj5OAlI4Emnx0BpFywg # trained with bp
# stt = STT(MODEL_NAME, lm='pt-BR.word.4-gram.arpa')
# CETUC with LM
ds = load_data('cetuc_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CETUC WER:", wer)
# Common Voice with LM
ds = load_data('commonvoice_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("CV WER:", wer)
# LaPS with LM
ds = load_data('lapsbm_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Laps WER:", wer)
# MLS with LM
ds = load_data('mls_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("MLS WER:", wer)
# SID with LM
ds = load_data('sid_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("Sid WER:", wer)
# TEDx with LM
ds = load_data('tedx_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("TEDx WER:", wer)
# VoxForge with LM
ds = load_data('voxforge_dataset')
result = ds.map(stt.batch_predict, batched=True, batch_size=8)
wer, mer, wil = calc_metrics(result["sentence"], result["predicted"])
print("VoxForge WER:", wer)
đ Documentation
Dataset Information
Dataset | Train | Valid | Test |
---|---|---|---|
CETUC | -- | 5.4h | |
Common Voice | 37.8h | -- | 9.5h |
LaPS BM | -- | 0.1h | |
MLS | -- | 3.7h | |
Multilingual TEDx (Portuguese) | -- | 1.8h | |
SID | -- | 1.0h | |
VoxForge | -- | 0.1h | |
Total | -- | 21.6h |
Summary
CETUC | CV | LaPS | MLS | SID | TEDx | VF | AVG | |
---|---|---|---|---|---|---|---|---|
commonvoice10 (demonstration below) | 0.133 | 0.189 | 0.165 | 0.189 | 0.247 | 0.474 | 0.251 | 0.235 |
commonvoice10 + 4 - gram (demonstration below) | 0.060 | 0.117 | 0.088 | 0.136 | 0.181 | 0.394 | 0.227 | 0.171 |
đ License
This project is licensed under the Apache 2.0 license.
Voice Activity Detection
MIT
Voice activity detection model based on pyannote.audio 2.1, used to identify speech activity segments in audio
Speech Recognition
V
pyannote
7.7M
181
Wav2vec2 Large Xlsr 53 Portuguese
Apache-2.0
This is a fine-tuned XLSR-53 large model for Portuguese speech recognition tasks, trained on the Common Voice 6.1 dataset, supporting Portuguese speech-to-text conversion.
Speech Recognition Other
W
jonatasgrosman
4.9M
32
Whisper Large V3
Apache-2.0
Whisper is an advanced automatic speech recognition (ASR) and speech translation model proposed by OpenAI, trained on over 5 million hours of labeled data, with strong cross-dataset and cross-domain generalization capabilities.
Speech Recognition Supports Multiple Languages
W
openai
4.6M
4,321
Whisper Large V3 Turbo
MIT
Whisper is a state-of-the-art automatic speech recognition (ASR) and speech translation model developed by OpenAI, trained on over 5 million hours of labeled data, demonstrating strong generalization capabilities in zero-shot settings.
Speech Recognition
Transformers Supports Multiple Languages

W
openai
4.0M
2,317
Wav2vec2 Large Xlsr 53 Russian
Apache-2.0
A Russian speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampled audio input
Speech Recognition Other
W
jonatasgrosman
3.9M
54
Wav2vec2 Large Xlsr 53 Chinese Zh Cn
Apache-2.0
A Chinese speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input.
Speech Recognition Chinese
W
jonatasgrosman
3.8M
110
Wav2vec2 Large Xlsr 53 Dutch
Apache-2.0
A Dutch speech recognition model fine-tuned based on facebook/wav2vec2-large-xlsr-53, trained on the Common Voice and CSS10 datasets, supporting 16kHz audio input.
Speech Recognition Other
W
jonatasgrosman
3.0M
12
Wav2vec2 Large Xlsr 53 Japanese
Apache-2.0
Japanese speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, supporting 16kHz sampling rate audio input
Speech Recognition Japanese
W
jonatasgrosman
2.9M
33
Mms 300m 1130 Forced Aligner
A text-to-audio forced alignment tool based on Hugging Face pre-trained models, supporting multiple languages with high memory efficiency
Speech Recognition
Transformers Supports Multiple Languages

M
MahmoudAshraf
2.5M
50
Wav2vec2 Large Xlsr 53 Arabic
Apache-2.0
Arabic speech recognition model fine-tuned from facebook/wav2vec2-large-xlsr-53, trained on Common Voice and Arabic speech corpus
Speech Recognition Arabic
W
jonatasgrosman
2.3M
37
Featured Recommended AI Models
Š 2025AIbase