đ Wav2Vec2-Large-XLSR-53-Estonian
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 in Estonian, leveraging the Common Voice dataset. When using this model, ensure that your speech input is sampled at 16kHz.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 in Estonian using the Common Voice. When using this model, make sure that your speech input is sampled at 16kHz.
⨠Features
- Fine - tuned for Estonian language.
- Suitable for automatic speech recognition tasks.
đĻ Installation
No specific installation steps are provided in the original document.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "et", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-estonian")
model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-estonian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "et", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-estonian")
model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-estonian")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\%\â\â\īŋŊ\|\āĨ¤\â\â\']'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
đ Documentation
Evaluation
The model can be evaluated on the Estonian test data of Common Voice as shown in the advanced usage code example.
Test Result: 37.36%
Training
The Common Voice train
and validation
datasets were used for training.
đ License
This model is licensed under the Apache 2.0 license.
đ Model Information
Property |
Details |
Model Type |
Fine - tuned Wav2Vec2 - Large - XLSR - 53 for Estonian |
Training Data |
Common Voice train and validation datasets |
Test Dataset |
Common Voice Estonian test dataset |
Test WER |
37.36% |