đ Wav2Vec2-Large-XLSR-53-Tamil
This project fine-tunes the facebook/wav2vec2-large-xlsr-53 model in Tamil using the Common Voice dataset. Ensure your speech input is sampled at 16kHz when using this model.
đ Information Table
Property |
Details |
Model Type |
Wav2Vec2-Large-XLSR-53-Tamil |
Training Data |
Common Voice train , validation datasets |
License |
apache-2.0 |
đ Quick Start
This fine-tuned model is based on facebook/wav2vec2-large-xlsr-53 and trained in Tamil with the Common Voice dataset. When using this model, make sure your speech input is sampled at 16kHz.
⨠Features
- Fine-tuned for Tamil language in automatic speech recognition.
- Can be used directly without a language model.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ta", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil")
model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
đ Documentation
The model can be evaluated on the Tamil test data of Common Voice as follows:
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ta", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("manandey/wav2vec2-large-xlsr-tamil")
model = Wav2Vec2ForCTC.from_pretrained("manandey/wav2vec2-large-xlsr-tamil")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\â\%\â\â\īŋŊ\â\â\(\)]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 56.44%
đ§ Technical Details
The Common Voice train
and validation
datasets were used for training.
đ License
This project is licensed under the apache-2.0 license.