đ Wav2Vec2-Large-XLSR-53-euskera
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 in Euskera, leveraging the Common Voice dataset. Ensure your speech input is sampled at 16kHz when using this model.
đ Quick Start
This fine - tuned model is based on facebook/wav2vec2-large-xlsr-53 and trained on Euskera using the Common Voice dataset. When using this model, make sure your speech input is sampled at 16kHz.
⨠Features
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "eu", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera")
model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "eu", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera")
model = Wav2Vec2ForCTC.from_pretrained("mrm8488/wav2vec2-large-xlsr-53-euskera")
model.to("cuda")
chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"\\â\\%\\â\\â\\īŋŊ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
đ Documentation
Evaluation
The model can be evaluated on the Euskera test data of Common Voice using the provided code.
Test Result: 24.03 %
Training
The Common Voice train
and validation
datasets were used for training. However, the script used for training is not specified in the original document.
đ License
This project is licensed under the Apache - 2.0 license.
đĻ Model Information
Property |
Details |
Model Type |
Wav2Vec2-Large-XLSR-53-euskera |
Training Data |
Common Voice train , validation datasets |
Tags |
audio, automatic-speech-recognition, speech, xlsr-fine-tuning-week |
License |
apache-2.0 |
Model Name |
XLSR Wav2Vec2 Euskera Manuel Romero |
Task |
Speech Recognition (automatic-speech-recognition) |
Dataset |
Common Voice eu (common_voice, args: eu) |
Metrics (Test WER) |
24.03 |