đ Wav2Vec2-Large-XLSR-53-Vietnamese
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 on Vietnamese, leveraging the Common Voice, Vivos dataset and FOSD dataset. It provides a solution for Vietnamese speech recognition.
đ Quick Start
When using this model, ensure that your speech input is sampled at 16kHz.
⨠Features
- Fine - tuned on multiple Vietnamese datasets including Common Voice, Vivos, and FOSD.
- Suitable for Vietnamese speech recognition tasks.
đĻ Installation
No specific installation steps are provided in the original document, so this section is skipped.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "vi", split="test")
processor = Wav2Vec2Processor.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "vi", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese")
model = Wav2Vec2ForCTC.from_pretrained("not-tanh/wav2vec2-large-xlsr-53-vietnamese")
model.to("cuda")
chars_to_ignore_regex = r'[,?.!\-;:"â%\'īŋŊ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 39.571823%
đ Documentation
Model Information
Property |
Details |
Model Type |
Fine - tuned Wav2Vec2 - Large - XLSR - 53 for Vietnamese |
Training Data |
Common Voice, Vivos dataset, FOSD dataset |
Metrics |
Word Error Rate (WER) |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
License |
apache - 2.0 |
Model Index
- Name: Ted Vietnamese XLSR Wav2Vec2 Large 53
- Results:
- Task:
- Name: Speech Recognition
- Type: automatic - speech - recognition
- Dataset:
- Name: Common Voice vi
- Type: common_voice
- Args: vi
- Metrics:
- Name: Test WER
- Type: wer
- Value: 39.571823
đ§ Technical Details
The Common Voice train
, validation
, the VIVOS and FOSD datasets were used for training. The script used for training can be found ... # TODO
đ License
This model is licensed under the apache - 2.0 license.