๐ Wav2Vec2-Large-XLSR-53-Egyptian-Arabic
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 for Egyptian Arabic, leveraging the arabicspeech.org MGB - 3. Ensure your speech input is sampled at 16kHz when using this model.
๐ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 for Egyptian Arabic, using the arabicspeech.org MGB - 3. When using this model, make sure your speech input is sampled at 16kHz.
โจ Features
๐ฆ Installation
No specific installation steps are provided in the original document.
๐ป Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ar", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian")
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ar", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian")
model = Wav2Vec2ForCTC.from_pretrained("othrif/wav2vec2-large-xlsr-egyptian")
model.to("cuda")
chars_to_ignore_regex = '[\ุ\โ\_get\ยซ\ยป\ู\ู\,\?\.\!\-\;\:\"\โ\%\โ\โ\๏ฟฝ\#\ุ\โญ,\ุ]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
๐ Documentation
Test Result
The model achieved a Word Error Rate (WER) of 55.2 on the test dataset.
Training
The Common Voice train
and validation
datasets were used for training. The training script can be found here.
๐ง Technical Details
The model is based on the fine - tuning of facebook/wav2vec2-large-xlsr-53 on Egyptian Arabic data from arabicspeech.org MGB - 3.
๐ License
This model is licensed under the Apache 2.0 license.
๐ Model Information
Property |
Details |
Model Type |
Wav2Vec2 - Large - XLSR - 53 - Egyptian - Arabic |
Training Data |
Common Voice train , validation datasets; arabicspeech.org MGB - 3 |
Metrics |
Word Error Rate (WER) |
License |
apache - 2.0 |
Model Index |
Name: XLSR Wav2Vec2 Egyptian Arabic by Othmane Rifki; Results: Speech Recognition task on arabicspeech.org MGB - 3 dataset with a Test WER of 55.2 |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
Datasets |
https://arabicspeech.org/ |