🚀 Wav2Vec2-Large-XLSR-53-Japanese
This model is fine-tuned from facebook/wav2vec2-large-xlsr-53 on Japanese using datasets like Common Voice. It's designed for automatic speech recognition tasks.
Dataset and Metrics
Property |
Details |
Datasets |
common_voice; TODO: add more datasets if you have used additional datasets. Make sure to use the exact same dataset name as the one found here. If the dataset can not be found in the official datasets, just give it a new name |
Metrics |
wer, cer |
Tags |
audio, automatic-speech-recognition, speech, xlsr-fine-tuning-week |
License |
apache-2.0 |
Model Results
Task |
Dataset |
Metrics |
Speech Recognition (automatic-speech-recognition) |
Common Voice ja (type: common_voice, args: ja) |
Test WER: 70.1869 |
🚀 Quick Start
When using this model, make sure that your speech input is sampled at 16kHz.
✨ Features
- Fine-tuned on Japanese language data, suitable for Japanese speech recognition tasks.
- Can be used directly without a language model.
📦 Installation
No specific installation steps are provided in the original README.
💻 Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "ja", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
The model can be evaluated as follows on the Japanese test data of Common Voice.
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "ja", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
model = Wav2Vec2ForCTC.from_pretrained("qqhann/w2v_hf_commonvoice_from_xlsr53_pretrain_0329UTC1500")
model.to("cuda")
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“]'
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 70.18 %
🔧 Technical Details
The Common Voice train
, validation
, and ... datasets were used for training as well as ... and ...
The script used for training can be found here