đ Wav2Vec2-Large-XLSR-Bengali
This project fine-tunes the facebook/wav2vec2-large-xlsr-53 model for Bengali using a specific dataset, enabling automatic speech recognition tasks.
đ Quick Start
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 for Bengali, leveraging the Bengali ASR training data set containing ~196K utterances. When using this model, ensure that your speech input is sampled at 16kHz.
⨠Features
Property |
Details |
Language |
Bengali |
Datasets |
OpenSLR |
Metrics |
wer |
Tags |
audio, automatic - speech - recognition, speech, xlsr - fine - tuning - week |
License |
cc - by - sa - 4.0 |
Model Name |
XLSR Wav2Vec2 Bengali by Tanmoy Sarkar |
Task |
Speech Recognition (automatic - speech - recognition) |
Dataset Args |
ben |
Test WER |
88.58 |
đĻ Installation
The dataset must be downloaded from this website and preprocessed accordingly. For example, 1250 test samples have been chosen.
đģ Usage Examples
Basic Usage
import pandas as pd
test_dataset = pd.read_csv('utt_spk_text.tsv', sep='\\t', header=None)[60000:61250]
test_dataset.columns = ["audio_path", "__", "label"]
test_dataset = test_data.drop("__", axis=1)
def add_file_path(text):
path = "data/" + text[:2] + "/" + text + '.flac'
return path
test_dataset['audio_path'] = test_dataset['audio_path'].map(lambda x: add_file_path(x))
Advanced Usage
The model can be used directly (without a language model) as follows:
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["audio_path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["label"][:2])
đ Documentation
Evaluation
The model can be evaluated as follows on the Bengali test data of OpenSLR.
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
model = Wav2Vec2ForCTC.from_pretrained("tanmoyio/wav2vec2-large-xlsr-bengali")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["label"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
Test Result: 88.58 %
Training
The script used for training can be found Bengali ASR Fine Tuning Wav2Vec2
đ License
This project is licensed under the cc - by - sa - 4.0 license.