đ Wav2Vec2-Large-XLSR-53-Odia
This model is a fine - tuned version of facebook/wav2vec2-large-xlsr-53 for Odia, leveraging data from Multilingual and code - switching ASR challenges for low resource Indian languages. Ensure your speech input is sampled at 16kHz when using this model.
đ Quick Start
This fine - tuned model is based on facebook/wav2vec2-large-xlsr-53 for the Odia language, using data from Multilingual and code - switching ASR challenges for low resource Indian languages. When using this model, the speech input should be sampled at 16kHz.
⨠Features
- Language Focus: Specifically fine - tuned for the Odia language.
- Data Source: Utilizes data from the Multilingual and code - switching ASR challenges for low resource Indian languages.
- Sampling Requirement: Requires speech input sampled at 16kHz.
đĻ Installation
No specific installation steps are provided in the original README.
đģ Usage Examples
Basic Usage
import torch
import torchaudio
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
test_dataset = load_dataset("common_voice", "or", split="test[:2%]")
processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
predicted_ids = torch.argmax(logits, dim=-1)
print("Prediction:", processor.batch_decode(predicted_ids))
print("Reference:", test_dataset["sentence"][:2])
Advanced Usage
import torch
import torchaudio
from datasets import load_dataset, load_metric
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import re
test_dataset = load_dataset("common_voice", "or", split="test")
wer = load_metric("wer")
processor = Wav2Vec2Processor.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
model = Wav2Vec2ForCTC.from_pretrained("theainerd/wav2vec2-large-xlsr-53-odia")
model.to("cuda")
resampler = torchaudio.transforms.Resample(48_000, 16_000)
def speech_file_to_array_fn(batch):
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
speech_array, sampling_rate = torchaudio.load(batch["path"])
batch["speech"] = resampler(speech_array).squeeze().numpy()
return batch
test_dataset = test_dataset.map(speech_file_to_array_fn)
def evaluate(batch):
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
with torch.no_grad():
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["pred_strings"] = processor.batch_decode(pred_ids)
return batch
result = test_dataset.map(evaluate, batched=True, batch_size=8)
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
đ Documentation
Test Result
The model achieved a Word Error Rate (WER) of 68.75% on the test data.
Training
The script used for training can be found Odia ASR Fine Tuning Wav2Vec2.
đ License
This model is licensed under the Apache 2.0 license.
đĻ Model Information
Property |
Details |
Model Type |
Wav2Vec2 - Large - XLSR - 53 - Odia |
Training Data |
OpenSLR |
Evaluation Metric |
Word Error Rate (WER) |
Test WER |
68.75% |
License |
Apache 2.0 |