🚀 Wav2Vec2-Base-960h
This repository reimplements Facebook's official wav2vec, aiming to provide a clear way to convert the pretrain model to a pytorch.bin file.
🚀 Quick Start
This repository is a re - implementation of official Facebook’s wav2vec. There is no description of converting the wav2vec pretrain model to a pytorch.bin file. We are rebuilding pytorch.bin from the pretrain model. Here is the conversion method.
pip install transformers[sentencepiece]
pip install fairseq -U
git clone https://github.com/huggingface/transformers.git
cp transformers/src/transformers/models/wav2vec2/convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py .
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/wav2vec_small_960h.pt -O ./wav2vec_small_960h.pt
mkdir dict
wget https://dl.fbaipublicfiles.com/fairseq/wav2vec/dict.ltr.txt
mkdir outputs
python convert_wav2vec2_original_pytorch_checkpoint_to_pytorch.py --pytorch_dump_folder_path ./outputs --checkpoint_path ./wav2vec_small_960h.pt --dict_path ./dict
✨ Features
- Dataset Support: Supports the
librispeech_asr
dataset.
- Widget Examples: Provides two audio examples from Librispeech for quick testing.
- License: Licensed under the
apache - 2.0
license.
📦 Installation
The installation steps are included in the conversion method above. You need to install the necessary libraries and clone the relevant repositories.
💻 Usage Examples
Basic Usage
To transcribe audio files the model can be used as a standalone acoustic model as follows:
from transformers import Wav2Vec2Tokenizer, Wav2Vec2ForCTC
from datasets import load_dataset
import soundfile as sf
import torch
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")
ds = ds.map(map_to_array)
input_values = tokenizer(ds["speech"][:2], return_tensors="pt", padding="longest").input_values
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
Advanced Usage
This code snippet shows how to evaluate facebook/wav2vec2-base-960h on LibriSpeech's "clean" and "other" test data.
from datasets import load_dataset
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
import soundfile as sf
import torch
from jiwer import wer
librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")
model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
def map_to_array(batch):
speech, _ = sf.read(batch["file"])
batch["speech"] = speech
return batch
librispeech_eval = librispeech_eval.map(map_to_array)
def map_to_pred(batch):
input_values = tokenizer(batch["speech"], return_tensors="pt", padding="longest").input_values
with torch.no_grad():
logits = model(input_values.to("cuda")).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = tokenizer.batch_decode(predicted_ids)
batch["transcription"] = transcription
return batch
result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["speech"])
print("WER:", wer(result["text"], result["transcription"]))
Result (WER):
📚 Documentation
📄 License
This project is licensed under the apache - 2.0
license.