đ Wav2Vec2 XLS-R 300M Cantonese (zh-HK)
Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the XLS-R architecture, fine-tuned on the zh-HK
subset of the Common Voice dataset.
đ Quick Start
Wav2Vec2 XLS-R 300M Cantonese (zh-HK) is an automatic speech recognition model based on the XLS-R architecture. This model is a fine-tuned version of Wav2Vec2-XLS-R-300M on the zh-HK
subset of the Common Voice dataset.
This model was trained using HuggingFace's PyTorch framework and is part of the Robust Speech Challenge Event organized by HuggingFace. All training was done on a Tesla V100, sponsored by OVH.
All necessary scripts used for training could be found in the Files and versions tab, as well as the Training metrics logged via Tensorboard.
⨠Features
- Based on the XLS-R architecture, suitable for automatic speech recognition tasks.
- Fine-tuned on the
zh-HK
subset of the Common Voice dataset, optimized for Cantonese speech recognition.
- Trained using HuggingFace's PyTorch framework and participated in the Robust Speech Challenge Event.
đ Documentation
Model
Property |
Details |
Model Type |
wav2vec2-xls-r-300m-zh-HK-v2 |
#params |
300M |
Arch. |
XLS-R |
Training Data |
Common Voice zh-HK Dataset |
Evaluation Results
The model achieves the following results on evaluation:
Dataset |
Loss |
CER |
Common Voice |
0.8089 |
31.73% |
Common Voice 7 |
N/A |
23.11% |
Common Voice 8 |
N/A |
23.02% |
Robust Speech Event - Dev Data |
N/A |
56.60% |
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
learning_rate
: 0.0001
train_batch_size
: 8
eval_batch_size
: 8
seed
: 42
gradient_accumulation_steps
: 4
total_train_batch_size
: 32
optimizer
: Adam with betas=(0.9, 0.999)
and epsilon=1e-08
lr_scheduler_type
: linear
lr_scheduler_warmup_steps
: 2000
num_epochs
: 100.0
mixed_precision_training
: Native AMP
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Wer |
Cer |
69.8341 |
1.34 |
500 |
80.0722 |
1.0 |
1.0 |
6.6418 |
2.68 |
1000 |
6.6346 |
1.0 |
1.0 |
6.2419 |
4.02 |
1500 |
6.2909 |
1.0 |
1.0 |
6.0813 |
5.36 |
2000 |
6.1150 |
1.0 |
1.0 |
5.9677 |
6.7 |
2500 |
6.0301 |
1.1386 |
1.0028 |
5.9296 |
8.04 |
3000 |
5.8975 |
1.2113 |
1.0058 |
5.6434 |
9.38 |
3500 |
5.5404 |
2.1624 |
1.0171 |
5.1974 |
10.72 |
4000 |
4.5440 |
2.1702 |
0.9366 |
4.3601 |
12.06 |
4500 |
3.3839 |
2.2464 |
0.8998 |
3.9321 |
13.4 |
5000 |
2.8785 |
2.3097 |
0.8400 |
3.6462 |
14.74 |
5500 |
2.5108 |
1.9623 |
0.6663 |
3.5156 |
16.09 |
6000 |
2.2790 |
1.6479 |
0.5706 |
3.32 |
17.43 |
6500 |
2.1450 |
1.8337 |
0.6244 |
3.1918 |
18.77 |
7000 |
1.8536 |
1.9394 |
0.6017 |
3.1139 |
20.11 |
7500 |
1.7205 |
1.9112 |
0.5638 |
2.8995 |
21.45 |
8000 |
1.5478 |
1.0624 |
0.3250 |
2.7572 |
22.79 |
8500 |
1.4068 |
1.1412 |
0.3367 |
2.6881 |
24.13 |
9000 |
1.3312 |
2.0100 |
0.5683 |
2.5993 |
25.47 |
9500 |
1.2553 |
2.0039 |
0.6450 |
2.5304 |
26.81 |
10000 |
1.2422 |
2.0394 |
0.5789 |
2.4352 |
28.15 |
10500 |
1.1582 |
1.9970 |
0.5507 |
2.3795 |
29.49 |
11000 |
1.1160 |
1.8255 |
0.4844 |
2.3287 |
30.83 |
11500 |
1.0775 |
1.4123 |
0.3780 |
2.2622 |
32.17 |
12000 |
1.0704 |
1.7445 |
0.4894 |
2.2225 |
33.51 |
12500 |
1.0272 |
1.7237 |
0.5058 |
2.1843 |
34.85 |
13000 |
0.9756 |
1.8042 |
0.5028 |
2.1 |
36.19 |
13500 |
0.9527 |
1.8909 |
0.6055 |
2.0741 |
37.53 |
14000 |
0.9418 |
1.9026 |
0.5880 |
2.0179 |
38.87 |
14500 |
0.9363 |
1.7977 |
0.5246 |
2.0615 |
40.21 |
15000 |
0.9635 |
1.8112 |
0.5599 |
1.9448 |
41.55 |
15500 |
0.9249 |
1.7250 |
0.4914 |
1.8966 |
42.89 |
16000 |
0.9023 |
1.5829 |
0.4319 |
1.8662 |
44.24 |
16500 |
0.9002 |
1.4833 |
0.4230 |
1.8136 |
45.58 |
17000 |
0.9076 |
1.1828 |
0.2987 |
1.7908 |
46.92 |
17500 |
0.8774 |
1.5773 |
0.4258 |
1.7354 |
48.26 |
18000 |
0.8727 |
1.5037 |
0.4024 |
1.6739 |
49.6 |
18500 |
0.8636 |
1.1239 |
0.2789 |
1.6457 |
50.94 |
19000 |
0.8516 |
1.2269 |
0.3104 |
1.5847 |
52.28 |
19500 |
0.8399 |
1.3309 |
0.3360 |
1.5971 |
53.62 |
20000 |
0.8441 |
1.3153 |
0.3335 |
1.602 |
54.96 |
20500 |
0.8590 |
1.2932 |
0.3433 |
1.5063 |
56.3 |
21000 |
0.8334 |
1.1312 |
0.2875 |
1.4631 |
57.64 |
21500 |
0.8474 |
1.1698 |
0.2999 |
1.4997 |
58.98 |
22000 |
0.8638 |
1.4279 |
0.3854 |
1.4301 |
60.32 |
22500 |
0.8550 |
1.2737 |
0.3300 |
1.3798 |
61.66 |
23000 |
0.8266 |
1.1802 |
0.2934 |
1.3454 |
63.0 |
23500 |
0.8235 |
1.3816 |
0.3711 |
1.3678 |
64.34 |
24000 |
0.8550 |
1.6427 |
0.5035 |
1.3761 |
65.68 |
24500 |
0.8510 |
1.6709 |
0.4907 |
1.2668 |
67.02 |
25000 |
0.8515 |
1.5842 |
0.4505 |
1.2835 |
68.36 |
25500 |
0.8283 |
1.5353 |
0.4221 |
1.2961 |
69.7 |
26000 |
0.8339 |
1.5743 |
0.4369 |
1.2656 |
71.05 |
26500 |
0.8331 |
1.5331 |
0.4217 |
1.2556 |
72.39 |
27000 |
0.8242 |
1.4708 |
0.4109 |
1.2043 |
73.73 |
27500 |
0.8245 |
1.4469 |
0.4031 |
1.2722 |
75.07 |
28000 |
0.8202 |
1.4924 |
0.4096 |
1.202 |
76.41 |
28500 |
0.8290 |
1.3807 |
0.3719 |
1.1679 |
77.75 |
29000 |
0.8195 |
1.4097 |
0.3749 |
1.1967 |
79.09 |
29500 |
0.8059 |
1.2074 |
0.3077 |
1.1241 |
80.43 |
30000 |
0.8137 |
1.2451 |
0.3270 |
1.1414 |
81.77 |
30500 |
0.8117 |
1.2031 |
0.3121 |
1.132 |
83.11 |
31000 |
0.8234 |
1.4266 |
0.3901 |
1.0982 |
84.45 |
31500 |
0.8064 |
1.3712 |
0.3607 |
1.0797 |
85.79 |
32000 |
0.8167 |
1.3356 |
0.3562 |
1.0119 |
87.13 |
32500 |
0.8215 |
1.2754 |
0.3268 |
1.0216 |
88.47 |
33000 |
0.8163 |
1.2512 |
0.3184 |
1.0375 |
89.81 |
33500 |
0.8137 |
1.2685 |
0.3290 |
0.9794 |
91.15 |
34000 |
0.8220 |
1.2724 |
0.3255 |
1.0207 |
92.49 |
34500 |
0.8165 |
1.2906 |
0.3361 |
1.0169 |
93.83 |
35000 |
0.8153 |
1.2819 |
0.3305 |
1.0127 |
95.17 |
35500 |
0.8187 |
1.2832 |
0.3252 |
0.9978 |
96.51 |
36000 |
0.8111 |
1.2612 |
0.3210 |
0.9923 |
97.85 |
36500 |
0.8076 |
1.2278 |
0.3122 |
1.0451 |
99.2 |
37000 |
0.8086 |
1.2451 |
0.3156 |
đ License
This project is licensed under the Apache-2.0 license.
đ§ Technical Details
Do consider the biases which came from pre-training datasets that may be carried over into the results of this model.
Authors
Wav2Vec2 XLS-R 300M Cantonese (zh-HK) was trained and evaluated by Wilson Wongso. All computation and development are done on OVH Cloud.
Framework versions
- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.4.dev0
- Tokenizers 0.11.0